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1. Introduction

There are quite a lot of different geometric brackets floating around in the literature,

like Schouten bracket, Nijenhuis bracket or in generalized complex geometry the Dorfman

bracket and Courant bracket, to list just some of them. They are often related to integra-

bility conditions for some structures on manifolds. The vanishing of the Nijenhuis bracket

of a complex structure with itself, for example, is equivalent to its integrability. The same

is true for the Schouten bracket and a Poisson structure. The above brackets can be uni-

fied with the concept of derived brackets [1]. Within this concept, they are all just natural

extensions of the Lie-bracket of vector fields to higher rank tensor fields.

It is well known that the antibracket appearing in the Lagrangian formalism for sigma

models is closely related to the Schouten-bracket in target space. In addition it was recently

observed by Alekseev and Strobl that the Dorfman bracket for sums of vectors and one-

forms appears naturally in two dimensional sigma models,1 [2]. This was generalized by

Bonelli and Zabzine [4] to a derived bracket for sums of vectors and p-forms on a p-

brane.2 These observations lead to the natural question whether there is a general relation

between the sigma-model Poisson bracket or antibracket and derived brackets in target

space. Working out the precise relation for sigma models with a special field content but

undetermined dimension and dynamics, is the major subject of the present paper.

One of the motivations for this article, was the application to generalized complex ge-

ometry. The importance of the latter in string theory is due to the observation that effective

spacetime supersymmetry after compactification requires the compactification manifold to

be a generalized Calabi-Yau manifold [5, 3, 6 – 9]. Deviations from an ordinary Calabi Yau

manifold are due to fluxes and also the concept of mirror symmetry can be generalized in

this context. There are numerous other important articles on the subject, like e.g. [10 – 14]

and many more. A more complete list of references can be found in [9]. A major part of

the considerations so far was done from the supergravity point of view. Target space su-

persymmetry is, however, related to an N = 2 supersymmetry on the worldsheet. For this

reason the relation between an extended worldsheet supersymmetry and the presence of

an integrable generalized complex structure (GCS) was studied in [15] (the reviews [16, 17]

on generalized complex geometry have this relation in mind). Zabzine clarified in [18] the

relation in a model independent way in a Hamiltonian description and showed that the

existence of a second non-manifest worldsheet supersymmetry Q2 in an N = 1 sigma-

model is equivalent to the existence of an integrable GCS J . It is the observation that

the integrability of the GCS J can be written as the vanishing of a generalized bracket

[J ,J ]B = 0 which leads to the natural question, whether there is a direct mapping between

[J ,J ]B = 0&J 2 = −1 on the one side and {Q2,Q2} = 2P on the other side. This will be

a natural application in subsection 3.2 of the more general preceding considerations about

1In [2], the non-symmetric bracket is called ’Courant bracket’. Following e.g. Gualtieri [3] or [1] it will

be called ’Dorfman bracket’ in this paper, while ’Courant bracket’ is reserved for its antisymmetrization

(see (C.31) and (C.38)).
2The Vinogradov bracket appearing in [4] is just the antisymmetrization of a derived bracket (see foot-

note 25 on page 49).
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the relation between (super-)Poisson brackets in sigma models with special field content

and derived brackets in the target space.

A second interesting application is Zucchini’s Hitchin-sigma-model [19]. There are two

more papers on that subject [20, 21], but the present discussion refers only to the first one.

Zucchini’s model is a two dimensional sigma-model in a target space with a generalized

complex structure (GCS). The sigma-model is topological when the GCS is integrable, while

the inverse does not hold. The condition for the sigma model to be topological is the master

equation (S,S) = 0. Again we might wonder whether there is a direct mapping between

the antibracket and S on the one hand and the geometric bracket and J on the other hand

and it will be shown in subsection 3.1 how this mapping works as an application of the

considerations in subsection 2.5. In order to understand more about geometric brackets in

general, however, it was necessary to dive into Kosmann-Schwarzbach’s review on derived

brackets [1] which led to observations that go beyond the application to the integrability

of a GCS .

The structure of the paper is as follows: The general relation between sigma models

and derived brackets in target space will be studied in the next section. The necessary

geometric setup will be established in 2.1. Although there are no new deep insights in 2.1,

the unconventional idea to extend the exterior derivative on forms to multivector valued

forms (see (2.32) and (2.35)) will provide a tool to write down a coordinate expression for

the general derived bracket between multivector valued forms (2.48) which to my knowledge

does not yet exist in literature. The main results in section 2, however, are the propositions

1 on page 18 and 1b on page 34 for the relation between the Poisson-bracket in a sigma-

model with special field content and the derived bracket in the target space, and the

proposition 3b on page 25 for the relation between the antibracket in a sigma-model and

the derived bracket in target space. Proposition 2 on page 21 is just a short quantum

consideration which only works for the particle case. In section 3 the propositions 1b and

3b are finally applied to the two examples which were mentioned above.

Another result is the relation between the generalized Nijenhuis tensor and the derived

bracket of J with itself, given in (3.12). The derivation of this can be found in the appendix

on page 61. In addition to this, there is a new coordinate form of the generalized Nijenhuis

tensor presented in (C.58) on page 59, which might be easier to memorize than the known

ones. There is also a short comment in footnote 28 on page 55 on a possible relation to

Hull’s doubled geometry.

Appendix A summarizes the used conventions, while appendix B is an introduction

to geometric brackets. Finally, appendix C provides some aspects of generalized complex

geometry which might be necessary to understand the two applications of above.

2. Sigma-model-induced brackets

2.1 Geometric brackets in phase space formulation

In the following some basic geometric ingredients which are necessary to formulate derived

brackets will be given. Although there is no sigma model and no physics explicitly involved

in this first subsection, the presentation and the techniques will be very suggestive, s.th.

– 3 –
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there is visually no big change when we proceed after that with considerations on sigma-

models.

2.1.1 Algebraic brackets

Consider a real differentiable manifold M . The interior product with a vector field v = vk∂k

(in a local coordinate basis) acting on a differential form ρ is a differential operator in the

sense that it differentiates with respect to the basis elements of the cotangent space:3

ıvρ
(r) = r · vkρ

(r)
km1...mr−1

(x) dxm1 · · ·dxmr−1 = vk ∂

∂(dxk)
(ρm1...mrdx

m1 · · ·dxmr) (2.1)

Let us rename4

cm ≡ dxm (2.2)

bm ≡ ∂m (2.3)

The vector v takes locally the form v = vmbm and when we introduce a canonical graded

Poisson bracket between cm and bm via {bm, cn} = δn
m , we get

ıvρ = {v, ρ} (2.4)

Extending also the local x-coordinate-space to a phase space by introducing the conjugate

momentum pm (whose geometric interpretation we will discover soon), we have altogether

the (graded) Poisson bracket

{bm, cn} = δn
m = {cn, bm} (2.5)

{pm, xn} = δn
m = −{xn, pm} (2.6)

{A,B} = A

←−
∂

∂bk

∂

∂ck
B + A

←−
∂

∂pk

∂

∂xk
B − (−)AB

(
B

←−
∂

∂bk

∂

∂ck
A + B

←−
∂

∂pk

∂

∂xk
A

)
(2.7)

and can write the exterior derivative acting on forms as generated via the Poisson-bracket

by an odd phase-space function o(c, p)

o ≡ o(c, p) ≡ ckpk (2.8){
o, ρ(r)

}
= ck {pk, ρm1...mr(x)} cm1 · · · cmr = dρ(r) (2.9)

The variables cm,bm,xm and pm can be seen as coordinates of T ∗(ΠTM), the cotangent

bundle of the tangent bundle with parity inversed fiber.

3Note, that a convention is used, were the prefactor 1
r!

which usually comes along with an r-form is

absorbed into the definition of the wedge-product. The common conventions can for all equations easily be

recovered by redefining all coefficients appropriately, e.g. ρm1...mr → 1
r!

ρm1...mr .
4The similarity with ghosts is of course no accident. It is well known (see e.g. [22]) that ghosts in a gauge

theory can be seen as 1-forms dual to the gauge-vector fields and the BRST differential as the sum of the

Koszul-Tate differential (whose homology implements the restriction to the constraint surface) and the lon-

gitudinal exterior derivative along the constraint surface. In that sense the present description corresponds

to a topological theory, where all degrees of freedom are gauged away. But we will not necessarily always

view cm as ghosts in the following. So let us in the beginning see cm just as another name for dxm. We

do not yet assume an underlying sigma-model, i.e. bm and cm do not necessarily depend on a worldsheet

variable.
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Interior product and “quantization”. Given a multivector valued form K(k,k′) of

form degree k and multivector degree k′, it reads in the local coordinate patch with the

new symbols

K(k,k′) ≡ K(k,k′)(x, c, b) ≡ Km1...mk

n1...nk′ (x) cm1 · · · cmkbn1 · · · bnk′
≡ Km...m

n...n (2.10)

The notation K(x, c, b) should stress, that K is locally a (smooth on a C∞ manifold)

function of the phase space variables which will later be used for analytic continuation (x

will be allowed to take c-number values of a superfunction). The last expression in the

above equation introduces a schematic index notation which is useful to write down the

explicit coordinate form for lengthy expressions. See in the appendix A at page 39 for a

more detailed description of its definition. It should, however, be self-explanatory enough

for a first reading of the article

One can define a natural generalization of the interior product with a vector ıv to an

interior product with a multivector valued form ıK acting on some r-form (in fact, it is

more like a combination of an interior and an exterior product — see footnote 23 on page

46 –, but we will stick to this name)

ıK(k,k′)ρ
(r) ≡ (k′)!

(
r

k′

)
Km...m

l1...lk′ρlk′ ...l1m...m︸ ︷︷ ︸
r

= (2.11)

= Km1...mk

n1...nk′cm1 · · · cmk

{
bn1 ,

{
· · · ,

{
bnk′

, ρ(r)
}}}

(2.12)

= Km1...mk

n1...nk′cm1 · · · cmk
∂

∂cn1
· · ·

∂

∂cnk′
ρ(r) (2.13)

It is a derivative of order k′ and thus not a derivative in the usual sense like ıv. The

third line shows the reason for the normalization of the first line, while the second line

is added for later convenience. The interior product is commonly used as an embedding

of the multivector valued forms in the space of differential operators acting on forms, i.e.

K → ıK , s.th. structures of the latter can be induced on the space of multivector valued

forms. In (2.13) the interior product ıK can be seen, up to a factor of ~/i, as the quantum

operator corresponding to K, where the form ρ plays the role of a wave function. The

natural ordering is here to put the conjugate momenta to the right. We can therefore fix

the following “quantization” rule (corresponding to b̂ = ~

i
∂
∂c

)

K̂(k,k′) ≡

(
~

i

)k′

ı
K(k,k′) (2.14)

with ıK(k,k′) = Km...m
n1...nk′

∂k′

∂cn1 · · · ∂cnk′
(2.15)

The (graded) commutator of two interior products induces an algebraic bracket due to

Buttin [23], which is defined via

[
ıK(k,k′) , ıL(l,,l′)

]
≡ ı[K,L]∆ (2.16)

– 5 –
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Using the obvious generalization of ∂n
x (f(x)g(x)) =

∑n
p=0

( n

p

)
∂p

xf(x)∂n−p
x g(x), a short

calculation leads to

ıK ıL =
∑

p≥0

ı
ı
(p)
K

L
= ıK∧L +

∑

p≥1

ı
ı
(p)
K

L
(2.17)

where we introduced the interior product of order p

ı
(p)

K(k,k′)
≡

(
k′

p

)
Km...m

n...nl1...lp
∂p

∂cn1 · · · ∂cnp
(2.18)

=
1

p!
K

←−
∂ p

∂bnp · · · ∂bn1

∂p

∂cn1 · · · ∂cnp
(2.19)

⇒ ı
(p)

K(k,k′)
L(l,l′) = (−)(k

′−p)(l−p)p!

(
k′

p

)(
l

p

)
Km...m

n...nl1...lpLlp...l1m...m
n...n (2.20)

which contracts only p of all k′ upper indices and therefore coincides with the interior

product of above when acting on forms for p = k′ and with the wedge product for p = 0.

ı
(k′)

K(k,k′)
ρ = ı

K(k,k′)ρ, ı
(0)
K L = K ∧ L (2.21)

Using (2.17) the algebraic bracket [ , ]∆ defined in (2.16) can thus be written as

[K(k,k′), L(l,l′)]∆ =
∑

p≥1

ı
(p)
K L − (−)(k−k′)(l−l′)ı

(p)
L K︸ ︷︷ ︸

≡[K,L]∆
(p)

(2.22)

(2.20) provides the explicit coordinate form of this algebraic bracket. From (2.19) we

recover the known fact that the p = 1 term of the algebraic bracket is induced by the

Poisson-bracket and therefore is itself an algebraic bracket, called the big bracket [1] or

Buttin’s algebraic bracket [23]

[K,L]∆(1) = ı
(1)
K L − (−)(k−k′)(l−l′)ı

(1)
L K

(2.19)
= {K,L} (2.23)

(2.20)
= (−)(k

′−1)(l−1)k′l Km...m
n...nl1Ll1m...m

n...n (2.24)

−(−)(k−k′)(l−l′)(−)(l
′−1)(k−1)l′k Lm...m

n...nl1Kl1m...m
n...n

For k′ = l′ = 1 it reduces to the Richardson-Nijenhuis bracket (B.60) for vector valued

forms. In [1] the big bracket is described as the canonical Poisson structure on
∧•(T ⊕T ∗)

which matches with the observation in (2.23). The bracket takes an especially pleasant

coordinate form for generalized multivectors as is presented in equation (C.67) on page 61.

The multivector-degree of the p-th term of the complete algebraic bracket (2.22) is

(k′ + l′ − p), so that we can rewrite (2.16) in terms of “quantum”-operators (2.14) in the

following way:
[
K̂(k,k′), L̂(l,l′)

]
=

∑

p≥1

(
~

i

)p
̂[K,L]∆(p) (2.25)

=

(
~

i

)
{̂K,L} +

∑

p≥2

(
~

i

)p
̂[K,L]∆(p) (2.26)

– 6 –
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The Poisson bracket is, as it should be, the leading order of the quantum bracket.

2.1.2 Extended exterior derivative and the derived bracket of the commutator

In the previous subsection the commutator of differential operators induced (via the interior

product as embedding) an algebraic bracket on the embedded tensors. Also other structures

from the operator space can be induced on the tensors. Having the commutator at hand,

one can build the derived bracket (see footnote 20 on page 44) of the commutator by

additionally commuting the first argument with the exterior derivative. Being interested

in the induced structure on multivector valued forms, we consider as arguments only interior

products with those multivector valued forms

[ıK ,dıL] ≡ [[ıK ,d] , ıL] (2.27)

One can likewise use other differentials to build a derived bracket, e.g. the twisted differen-

tial [d+ H, . . .] with an odd closed form H, which leads to so called twisted brackets. Let

us restrict to d for the moment. The derived bracket is in general not skew-symmetric but

it obeys a graded Jacobi-identity and is therefore what one calls a Loday bracket. When

looking for new brackets, the Jacobi identity is the property which is hardest to check.

A mechanism like above, which automatically provides it is therefore very powerful. The

above derived bracket will induce brackets like the Schouten bracket or even the Dorfman

bracket of generalized complex geometry on the tensors. In general, however, the interior

products are not closed under its action, i.e. the result of the bracket cannot necessarily be

written as ıK̃ for some K̃. An expression for a general bracket on the tensor level, which

reduces in the corresponding cases to the well known brackets therefore does not exist.

Instead one normally has to derive the brackets in the special cases separately. In the fol-

lowing, however, a natural approach is discussed including the new variable pm, introduced

in (2.6), which leads to an explicit coordinate expression for the general bracket. This

expression is of course tensorial only in the mentioned special cases, that is when terms

with pm vanish. This is not an artificial procedure, as the conjugate variable pm to xm is

always present in sigma-models, and it will in turn explain the geometric meaning of pm.

The exterior derivative d acting on forms is usually not defined acting on multivector

valued forms (otherwise we could build the derived bracket of the algebraic bracket (2.22)

by d without lifting everything to operators via the interior product). But via {o,K(k,k′)}

we can, at least formally, define a differential on multivector valued forms. The result,

however, contains the variable pk which we have not yet interpreted geometrically. After

extending the definition of the interior product to objects containing pm, we will get the

relation [d, ıK ] = ı{o,K}, i.e. {o, . . .} can be seen as an induced differential from the space

of operators. For forms ω(q), this simply reads [d, ıω] = ıdω. The definition dK ≡ {o,K}

thus seems to be a reasonable extension of the exterior derivative to multivector valued

forms. Let us first provide the necessary definitions.

Consider a phase space function, which is of arbitrary order in the variable pk

T (t,t′,t′′)(x, c, b, p) ≡ Tm1...mt

n1...nt′k1...kt′′ (x) cm1 · · · cmtbm1 · · · bmt′
pk1 · · · pkt′′

(2.28)

– 7 –
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T is symmetrized in k1 . . . kt′′ ,while it is antisymmetrized in the remaining indices. Using

the usual quantization rules b → ~

i
∂
∂c

and p → ~

i
∂
∂x

with the indicated ordering (conjugate

momenta to the right) while still insisting on (2.14) as the relation between quantum opera-

tor and interior product, we get an extended definition of the interior product (2.12), (2.13):

ıT (t,t′,t′′) ≡

(
i

~

)t′+t′′

T̂ (t,t′,t′′) ≡ Tm1...mt

n1...nt′k1...kt′′cm1 · · · cmt
∂t′

∂cn1 · · · ∂cnt′

∂t′′

∂xk1 · · · ∂xkt′′

(2.29)

ipT (t,t′,t′′)ρ
(r) = Tm1...mt

n1...nt′k1...kt′′cm1 · · · cmt ×

×
{
bn1 ,

{
· · · ,

{
bnt′

,
{
pk1, {· · · , {pkt′′

, ρ(r)}}
}}}}

(2.30)

= (t′)!
( r

t′

)
Tm...m

n1...nt′k1...kt′′
∂t′′

∂xk1 · · · ∂xkt′′
ρ
(r)
nt′ ...n1m...m (2.31)

The operator ıT will serve us as an embedding of T (a phase space function, which lies

in the extension of the space of multivector valued forms by the basis element pk) into

the space of differential operators acting on forms. Because of the partial derivatives with

respect to x, the last line is not a tensor and T in that sense not a well defined geometric

object. Nevertheless it can be a building block of a geometrically well defined object, for

example in the definition of the exterior derivative on multivector valued forms which we

suggested above. Namely, if we define5

dK(k,k′) ≡
{

o,K(k,k′)
}

= ∂mKm...m
n...n − (−)k−k′

k′ · Km...m
n...nkpk (2.32)

We get via our extended embedding (2.31) the nice relation 6

ıdKρ = [d, ıK ] ρ
(B.45)

= −(−)k−k′
LKρ (2.33)

with LKρ = (k′)!

(
r

k′ − 1

)
Km...m

l1...lk′∂lk′
ρlk′−1...l1m...m +

−(−)k−k′
(k′)!

(
r

k′

)
∂mKm...m

l1...lk′ρlk′ ...l1m...m (2.34)

5This can of course be seen as a BRST differential, which is well known to be the sum of the longitudinal

exterior derivate plus the Koszul Tate differential. However, as the constraint surface in our case corresponds

to the configuration space (pk would be the first class constraint generating the BRST-transformation),

it is reasonable to regard the BRST differential as a natural extension of the exterior derivative of the

configuration space.
6The exterior derivative on forms has already earlier (2.9) been seen to coincide with the Poisson bracket

with o, which can be used to demonstrate (2.33):

[d, ıK ] ρ = d(ıKρ) − (−)|K|ıK(dρ) = {o, ıKρ} − (−)|K|ıK {o, ρ}

(2.12)
= ∂m1Km2...mk+1

n1...nk′ c
m1 · · · cmk+1

n

bn1 ,
n

bn2 ,
n

· · · ,
n

bnk′
, ρ(r)

ooo

+

+(−)kk′ · Km1...mk

n1...nk′ c
m1 · · · cmk

n

{o, bn1}
| {z }

pn1

,
n

bn2 ,
n

· · · ,
n

bnk′
, ρ(r)

ooo o
(2.30)
=

(2.32)
ıdKρ

– 8 –
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LKρ is the natural generalization of the Lie derivative with respect to vectors acting on

forms, which is given similarly Lvρ = [ıv,d]ρ. As ıK is a higher order derivative, also LK is

a higher order derivative. Nevertheless, it will be called Lie derivative with respect to K in

this paper. Let us again recall this fact: if pk appears in a combination like dK, there is a

well defined geometric meaning and dK is up to a sign nothing else than the Lie derivative

with respect to K, when embedded in the space of differential operators on forms. The

commutator with the exterior derivative is a natural differential in the space of differential

operators acting on forms, and via the embedding it induces the differential d on K. It

should perhaps be stressed that the above definition of dK corresponds to an extended

action of the exterior derivative which acts also on the basis elements of the tangent space

d(∂m) = pm (2.35)

This approach will enable us to give explicit coordinate expressions for the derived bracket

of multivector valued forms even in the general case where the result is not a tensor: In the

space of differential operators on forms, we have the commutator [ıK , ıL] and its derived

bracket (B.48) [ıK ,dıL] ≡ [[ıK ,d], ıL], while on the space of multivector valued forms we

have the algebraic bracket [K,L]∆ and want to define its derived bracket up to a sign as

[dK,L]∆. To this end we also have to extend the definition (2.18), (2.19) of ı(p), which

appears in the explicit expression of the algebraic bracket in (2.22) to objects that contain

pk. This is done in a way that the old equations for the algebraic bracket remain formally

the same. So let us define7

ı
(p)

T (t,t′,t′′)
≡

p∑

q=0

(
t′

q

)(
t′′

p − q

)
Tm...m

n...ni1...iq , iq+1...ipk1...kt′′−p+qpk1 · · · pkt′′−p+q
×

×
∂p

∂ci1 . . . ∂ciq∂xiq+1 . . . ∂xip
(2.36)

=
1

p!

p∑

q=0

(
p

q

)
T

←−
∂ p

∂pip . . . ∂piq+1∂biq . . . ∂bi1

∂p

∂ci1 . . . ∂ciq∂xiq+1 . . . ∂xip
(2.37)

For p = t′ + t′′ it coincides with the full interior product (2.31): ı
(t′+t′′)

T (t,t′,t′′)
= ıT (t,t′,t′′) . In

addition we have with this definition (after some calculation) ı
(p)
dT = [d, ı

(p)
T ] and in particular

ı
(p)
dK = [d, ı

(p)
K ] (2.38)

and the equations for the algebraic bracket (2.16–2.22) indeed remain formally the same

7Note that
Pp

q=0

 

t′

q

!  

t′′

p − q

!

=

 

t′ + t′′

p

!

.
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for objects containing pm

[ıT (t,t′,t′′) , ıT̃ (t̃,t̃′,t̃′′) ] ≡ ı
[T,T̃ ]

∆ (2.39)

ıT ıT̃ =
∑

p≥0

ı
ı
(p)
T T̃

(2.40)

[T (t,t′,t′′), T̃ (t̃,t̃′,t̃′′)]∆ ≡
∑

p≥1

ı
(p)
T T̃ − (−)(t−t′)(t̃−t̃′)ı

(p)

T̃
T

︸ ︷︷ ︸
≡[T,T̃ ]∆

(p)

(2.41)

[T, T̃ ]∆(1) =
{

T, T̃
}

(2.42)

which we can again rewrite in terms of “quantum”-operators (2.14) as

[
T̂ (k,k′), ˆ̃T (l,l′)

]
=

∑

p≥1

(
~

i

)p ̂[
T, T̃

]∆

(p)
=

(
~

i

) {̂
T, T̃

}
+

∑

p≥2

(
~

i

)p ̂[
T, T̃

]∆

(p)
(2.43)

It should be stressed that — although very useful — ı(p) is unfortunately NOT a geometric

operation any longer in general, in the sense that ı
(p)
dKL and also ı

(p)
L dK do not have a well

defined geometric meaning, although dK and L have. ıdKρ and ı
(p)
K L are in contrast well

defined. ı
(p)
dKL, for example, should rather be understood as a building block of a coordinate

calculation which combines only in certain combinations (e.g. the bracket [ , ]∆) to s.th.

geometrically meaningful.

We are now ready to define the derived bracket of the algebraic bracket for multivector

valued forms (see footnote 20 on page 44)

[
K(k,k′),L(l,l′)

]
≡ [K,d L]∆ ≡ −(−)k−k′

[dK,L]∆ (2.44)

=
∑

p≥1

−(−)k−k′
ı
(p)
dKL + (−)(k+1−k′)(l−l′)+k−k′

ı
(p)
L dK (2.45)

=
∑

p≥1

−(−)k−k′
ı
(p)
dKL + (−)(k−k′+1)(l−l′+1)(−)l−l′ı

(p)
dL K

+(−)(k−k′)(l−l′)+k−k′
d(ı

(p)
L K) (2.46)

The result is geometrical in the sense that after embedding via the interior product it is

a well defined operator acting on forms. This is the case, because due to our extended

definitions we have for all multivector valued forms the relation

[[ıK ,d], ıL] = ı[K(k,k′),L(l,l′)] (2.47)

and the lefthand side is certainly a well defined geometric object. A considerable effort

went into getting a correct coordinate form for the general derived bracket and for that
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reason, let us quickly have a glance at the final result, although it is kind of ugly:8

[K,L] =
∑

p≥1

−(−)k−k′
(−)(k

′−p)(l−p)p!

(
l

p

)(
k′

p

)
∂mKm...m

n...nl1...lpLlp...l1m...m
n...n +

+(−)k+k′l+k′+p+pl+pk′
p!

(
k

p

)(
l′

p

)
∂mKm...mkp...k1

n...nLm...m
k1...kpn...n +

−(−)k
′l+k′+pl+pk′

p!

(
k

p − 1

)(
l′

p

)
∂lKm...mkp−1...k1

n...nLm...m
k1...kp−1ln...n +

+(−)(k
′−p)(l−p+1)p!

(
l

p − 1

)(
k′

p

)
Km...m

n...nl1...lp−1k∂kLlp−1...l1m...m
n...n +

+(−)(k
′−1−p)(l−p)p!(k′ − p)

(
l

p

) (
k′

p

)
Km...m

n...nl1...lpkLlp...l1m...m
n...npk +

−(−)k
′l+l+pk′+lpk′ · p!

(
k

p

)(
l′

p

)
Km...mkp...k1

n...nkLm...m
k1...kpn...npk (2.48)

The result is only a tensor, when both terms with pk on the righthand side vanish, although

the complete expression is in general geometrically well-defined when considered to be a

differential operator acting on forms via ı[K,L] as this equals per definition the well-defined

[[ıK ,d], ıL]. The above coordinate form reduces in the appropriate cases to vector Lie-

bracket, Schouten-bracket, and (up to a total derivative) to the (Fröhlicher)-Nijenhuis-

bracket. If one allows as well sums of a vector and a 1-form, we get the Dorfman bracket,

and also the sum of a vector and a general form gives a result without p.

Due to our extended definition of the exterior derivative, we can also define the derived

8The building blocks are

ı
(p)
dKL = (−)(k

′−p)(l−p)p!

 

k′

p

!  

l

p

!

∂mKm...m
n...ni1...ipLip...i1m...m

n...n +

−(−)k−k′

(−)(k
′−1−p)(l−p)(p + 1)!

 

k′

p + 1

!  

l

p

!

Km...m
n...ni1...ipkLip...i1m...m

n...npk +

−(−)k−k′

(−)(k
′−p)(l−p+1)p!

 

k′

p

!  

l

p − 1

!

Km...m
n...ni1...ip−1ip∂ipLip−1...i1m...m

n...n

ı
(p)
L dK = (−)(l

′−p)(k+1−p)+pp!

 

k

p

!  

l′

p

!

Lm...m
n...nk1...kp∂mKkp...k1m...m

n...n +

+(−)(l
′−p)(k+1−p)p!

 

k

p − 1

!  

l′

p

!

Lm...m
n...nk1...kp−1l∂lKkp−1...k1m...m

n...n +

−(−)k−k′

(−)(l
′−p)(k−p)k′ · p!

 

k

p

!  

l′

p

!

Lm...m
n...nk1...kpKkp...k1m...m

n...nkpk
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bracket of the big bracket (the Poisson bracket) via

[
K(k,k′),d L(l,l′)

]∆

(1)
≡ −(−)k−k′

[dK,L]∆(1) (2.49)

= −(−)k−k′
{dK,L} (2.50)

which is just the p = 1 term of the full derived bracket with the explicit coordinate expres-

sion

[K,d L]∆(1) = −(−)k−k′
(−)(k

′−1)(l−1)lk′∂mKm...m
n...nl1Ll1m...m

n...n +

−(−)k+k′l+lkl′∂mKm...mk1
n...nLm...m

k1n...n +

−(−)k
′l+ll′∂lKm...m

n...nLm...m
ln...n +

+(−)(k
′−1)lk′Km...m

n...nk∂kLm...m
n...n +

+(−)k
′(l−1)(k′ − 1)lk′Km...m

n...nl1kLl1m...m
n...npk +

−(−)k
′l+k′

k′kl′Km...mk1
n...nkLm...m

k1n...npk (2.51)

[K,L] = [K,d L]∆(1) − (−)k−k′
∑

p≥2

[dK,L]∆(p) (2.52)

Also this bracket takes a very pleasant coordinate form for generalized multivectors

(see (C.69) on page 61). In contrast to the full derived bracket, we have no guarantee

for this derived bracket to be geometrical itself.

Let us eventually note how one can easily adjust the extended exterior derivative to

the twisted case:

[d+ H∧ , ıK ] ≡ ıdHK (2.53)

dHK = dK + [H,K]∆ = dK − (−)k−k′
∑

p≥1

ı
(p)
K H (2.54)

with H being an odd closed differential form. It should be stressed that d+ H∧ is not a

differential, but on the operator level its commutator [d+H∧, . . .] is a differential and thus

the above defined dH is a differential as well.

2.2 Sigma-Models

A sigma model is a field theory whose fields are embedding functions from a world-volume

Σ into a target space M , like in string theory. So far there was no sigma-model explicitly

involved into our considerations. One can understand the previous subsection simply as a

convenient way to formulate some geometry. The phase space introduced there, however,

is like the phase space of a (point particle) sigma model with only one world-volume

dimension — the time — which is not showing up in the off-shell phase-space. Let us now

naively consider the same setting like before as a sigma model with the coordinates xm

depending on some worldsheet coordinates9 σµ. The resulting model has a very special

9The index µ will not include the worldvolume time, when considering the phase space, but it will

contain the time in the Lagrangian formalism. As this should be clear from the context, there will be no

notational distinction.
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field content, because its anticommuting fields cm(σ) have the same index structure as

the embedding coordinate xm(σ). In one and two worldvolume-dimensions, cm can be

regarded as worldvolume-fermions, and this will be used in the stringy application in 3.2.

In general worldvolume dimensions, cm could be seen as ghosts, leading to a topological

theory. In any case the dimension of the worldvolume will not yet be fixed, as the described

mechanism does not depend on it.

A multivector valued form on a C∞-manifold M can locally be regarded as an analytic

function of xm,dxm ≡ cm and ∂m ≡ bm

K(k,k′)(x,dx,∂) = Km1...mk

n1...nk′ (x)dxm1 ∧ · · · ∧ dxmk ∧ ∂n1 ∧ · · · ∧ ∂nk′
(2.55)

≡ Km1...mk

n1...nk′ (x)cm1 · · · cmkbn1 · · · bnk′

= K(k,k′)(x, c, b) (2.56)

For sigma models, xm → xm(σ), pm → pm(σ), cm → cm(σ) and bm → bm(σ) become

dependent on the worldvolume variables σµ. They are, however, for every σ valid arguments

of the function K. Frequently only the worldvolume coordinate σ will then be denoted as

new argument of K, which has to be understood in the following sense

K(k,k′)(σ) ≡ K(k,k′) (x(σ), c(σ), b(σ))

= Km1...mk

n1...nk′ (x(σ)) · cm1(σ) · · · cmk(σ)bn1(σ) · · · bnk′
(σ) (2.57)

Also functions depending on pm, like dK(x, c, b, p) in (2.32), or more general a function

T (t,t′,t′′)(x, c, b, p) as in (2.28) are denoted in this way

T (t,t′,t′′)(σ) ≡ T (t,t′,t′′) (x(σ), c(σ), b(σ), p(σ)) (see (2.28)) (2.58)

e.g. dK(σ) ≡ dK (x(σ), c(σ), b(σ), p(σ)) (see (2.32)) (2.59)

or o(σ) ≡ o (c(σ), p(σ)) = cm(σ)pm(σ) (see (2.8)) (2.60)

The expression dK(σ) should NOT be mixed up with the worldsheet exterior derivative

of K which will be denoted by dwK(σ).10 Every operation of the previous section, like

ı
(p)
K L or the algebraic or derived brackets leads again to functions of x, c, b and sometimes

p. Let us use for all of them the notation as above, e.g. for the derived bracket of the big

bracket (2.49), (2.51)

[
K(k,k′),d L(l,l′)

]∆

(1)
(σ) ≡

[
K(k,k′),L(l,l′)

](∆)

(1)
(x(σ), c(σ), b(σ), p(σ)) (2.61)

And even dxm = cm and dbm = pm will be seen as a function (identity) of cm or bm, s.th.

we denote

dxm(σ) ≡ cm(σ) (2.62)

dbm(σ) ≡ pm(σ) (2.63)

10It is much better to mix it up with a BRST transformation or with something similar to a worldsheet

supersymmetry transformation. We will come to that later in subsection 3.2. To make confusion perfect,

it should be added that in contrast it is not completely wrong in subsection 2.5 to mix up the target space

exterior derivative with the worldsheet exterior derivative. . .
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Although d acts only in the target space on x, b, c and p, the above obviously suggests to

introduce a differential – say s — in the new phase space, which is compatible with the

target space differential in the sense

s(xm(σ)) = dxm(σ) ≡ cm(σ) (2.64)

s(bm(σ)) = dbm(σ) ≡ pm(σ) (2.65)

We can generate swith the Poisson bracket in almost the same way as d before in (2.8):

Ω ≡

∫

Σ
d

dw−1
σ o(σ) =

∫
d

dw−1
σ cm(σ)pm(σ), s(. . .) = {Ω, . . .} (2.66)

The Poisson bracket between the conjugate fields gets of course an additional delta function

compared to (2.5), (2.6).

{
pm(σ′), xn(σ)

}
= δn

mδdw−1(σ′ − σ) (2.67)
{
bm(σ′), cn(σ)

}
= δn

mδdw−1(σ′ − σ) (2.68)

The first important (but rather trivial) observation is then that for K(σ) being a function

of x(σ), c(σ), b(σ) as in (2.57) (and not a functional, which could contain derivatives on or

integrations over σ) we have

s(K(σ)) =

(
cm(σ)

∂

∂(xm(σ))
+ pm(σ)

∂

∂(bm(σ))

)
K (x(σ), c(σ), b(σ)) = dK(σ) (2.69)

The same is true for more general objects of the form of T in (2.58). Because of this fact

the distinction between dand s is not very essential, but in subsection 2.5 the replacement

of the arguments as in (2.58) will be different and the distinction very essential in order

not to get confused.

The relation between Poisson bracket and big bracket (2.23), (2.42) gets obviously

modified by a delta function

{
K(k,k′)(σ′), L(l,l′)(σ)

}
=

[
K(k,k′), L(l,l′)

]∆

(1)
(σ) δdw−1(σ′ − σ) (2.70)

or more general

{
T (t,t′,t′′)(σ′), T̃ (t̃,t̃′,t̃′′)(σ)

}
=

[
T (t,t′,t′′), T̃ (t̃,t̃′,t̃′′)

]∆

(1)
(σ) δdw−1(σ′−σ) (2.71)

The relation between the derived bracket (using s) on the lefthand side and the derived

bracket (using d) on the righthand side is (omitting the overall sign in the definition of the

derived bracket)

{
sK(k,k′)(σ′), L(l,l′)(σ)

}
(2.69)
=

{
dK(k,k′)(σ′), L(l,l′)(σ)

}

(2.71)
=

[
dK(k,k′), L(l,l′)

]∆

(1)
(σ) δdw−1(σ′ − σ) (2.72)
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The worldvolume coordinates σ remain so far more or less only spectators. In the subsec-

tion 2.5, the world-volume coordinates play a more active part and already in the following

subsection a similar role is taken by an anticommuting extension of the worldsheet.

Before we proceed, it should be stressed that the replacement of x, c, b and p by

x(σ), c(σ), b(σ) and p(σ) was just the most naive replacement to do, and it will be a bit

extended in the following section until it can serve as a useful tool in an application in 3.2.

But in principle, one can replace those variables by any fields with matching index struc-

ture and parity (even composite ones) and study the resulting relations between Poisson

bracket on the one side and geometric bracket on the other side. Also the differential

s can be replaced for example by the twisted differential or by more general BRST-like

transformations. In this way it should be possible to implement other derived brackets, for

example those built with the Poisson-Lichnerowicz-differential (see [1]), in a sigma-model

description. In 2.5, a different (but also quite canonical) replacement is performed and

we will see that the different replacement corresponds to a change of the role of σ and an

anticommuting worldvolume coordinate θ which will be introduced in the following.

2.3 Natural appearance of derived brackets in Poisson brackets of superfields

In the application to worldsheet theories in section 3, there appear superfields, either

in the sense of worldsheet supersymmetry or in the sense of de-Rham superfields (see

e.g. [24, 19]). Let us view a superfield in general as a method to implement a fermionic

transformation of the fields via a shift in a fermionic parameter θ which can be regarded

as fermionic extension of the worldvolume. In our case the fermionic transformation is just

the spacetime de-Rham-differential d, or more precisely s, and is not necessarily connected

to worldvolume supersymmetry. In fact, in worldvolumes of dimension higher than two,

supersymmetry requires more than one fermionic parameter while a single θ is enough for

our purpose to implement s. In two dimensions, however, this single theta can really be

seen as a worldsheet fermion (see 3.2). But let us neglect this knowledge for a while, in

order to clearly see the mechanism, which will be a bit hidden again, when applied to the

supersymmetric case in 3.2.

As just said above, we want to implement with superfields the fermionic transformation

sand not yet a supersymmetry. So let us define in this section a superfield as a function of

the phase space fields with additional dependence on θ, Y = Y (x(σ), p(σ), c(σ), b(σ),θ),

which obeys11

sY (x(σ), p(σ), c(σ), b(σ),θ)
!
= ∂θY (x(σ), p(σ), c(σ), b(σ),θ) (2.73)

with sxm(σ) = cm(σ),

sbm(σ) = pm(σ) (sθ = 0) (2.74)

11If this seems unfamiliar, compare with the case of worldsheet supersymmetry, where one introduces a

differential operator Qθ ≡ ∂θ + θ∂σ and the definition of a superfield is, in contrast to here, δεY
!
= εQθY ,

where δε is the supersymmetry transformation of the component fields (compare 3.2).
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With our given field content it is possible to define two basic conjugate12 superfields Φm

and Sm which build up a super-phase-space 13

Φm(σ,θ) ≡ xm(σ) + θcm(σ) = xm(σ) + θsxm(σ) (2.75)

Sm(σ,θ) ≡ bm(σ) + θpm(σ) = bm(σ) + θsbm(σ)
{
Sm(σ,θ),Φn(σ′,θ′)

}
=

{
bm(σ),θ′cn(σ′)

}
+ θ

{
pm(σ), xn(σ′)

}
= (θ − θ′)︸ ︷︷ ︸

≡δ(θ−θ′)

δ(σ − σ′)δn
m

Φ and S are obviously superfields in the above sense

∂θΦm(σ,θ) = sxm(σ)︸ ︷︷ ︸
cm(σ)

+θscm(σ)︸ ︷︷ ︸
=0

= sΦm(σ,θ) ∂θSm = sbm(σ)︸ ︷︷ ︸
pm(σ)

+θspm(σ)︸ ︷︷ ︸
0

= sSm(σ,θ)

(2.76)

as well as sΦ(σ,θ) = c(σ) and sS(σ,θ) = p(σ) are superfields, and every analytic function

of those fields will be a superfield again.

12The superfields Φ and S are conjugate with respect to the following super-Poisson-bracket

˘
F (σ′, θ′), G(σ, θ)

¯
≡

≡

Z

d
dw−1

σ̃

Z

dθ̃

„

δF (σ′, θ′)/δSk(σ̃, θ̃)
δ

δΦk(σ̃, θ̃)
G(σ, θ) − δF (σ′, θ′)/δΦk(σ̃, θ̃)

δ

δSk(σ̃, θ̃)
G(σ, θ)

«

=

Z

d
dw−1

σ̃

Z

dθ̃

„

δF (σ′, θ′)/δSk(σ̃, θ̃)
δ

δΦk(σ̃, θ̃)
G(σ, θ) − (−)F GδG(σ′, θ′)/δSk(σ̃, θ̃)

δ

δΦk(σ̃, θ̃)
F (σ, θ)

«

which, however, boils down to taking the ordinary graded Poisson bracket between the component fields

(as can be seen in (2.75)). The functional derivatives from the left and from the right are defined as usual

via

δSA ≡

Z

d
dw−1

σ̃

Z

dθ̃ δA/δSk(σ̃, θ̃) · δSk(σ̃, θ̃) ≡

Z

d
dw−1

σ̃

Z

dθ̃ δSk(σ̃, θ̃) ·
δ

δSk(σ̃, θ̃)
A

and similarly for Φ, which leads to

δ

δSm(σ̃, θ̃)
Sn(σ, θ) = δm

n (θ − θ̃)δdw−1(σ − σ̃) = −δSn(σ, θ)/Sm(σ̃, θ̃)

δ

δΦm(σ̃, θ̃)
Φn(σ, θ) = δn

m(θ̃ − θ)δdw−1(σ − σ̃) = δΦn(σ, θ)/δΦm(σ̃, θ̃)

The functional derivatives can also be split in those with respect to the component fields

δ

δSm(σ̃, θ̃)
=

δ

δpm(σ̃)
− θ̃

δ

δbm(σ̃)
,

δ

δΦm(σ̃, θ̃)
=

δ

δcm(σ̃)
+ θ̃

δ

δxm(σ̃)

13For Grassmann variables δ(θ′ − θ) = θ′ − θ in the following sense
Z

dθ
′(θ′ − θ)F (θ′) =

Z

dθ
′(θ′ − θ)

`
F (θ) + (θ′ − θ)∂θF (θ)

´
=

=

Z

dθ
′

θ
′F (θ) − θ

′
θ∂θF (θ) − θθ

′∂θF (θ) = F (θ)

We have as usual

θδ(θ′ − θ) = θ(θ′ − θ) = θθ
′ = θ

′(θ′ − θ) = θ
′δ(θ′ − θ)

Pay attention to the antisymmetry

δ(θ′ − θ) = −δ(θ − θ
′)
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We will convince ourselves in this subsection that in the Poisson brackets of general

superfields, the derived brackets come with the complete δ-function (of σ and θ) while

the corresponding algebraic brackets come with a derivative of the delta-function. The

introduction of worldsheet coordinates σ was not yet really necessary for this discussion,

but it will be useful for the comparison with the subsequent subsection. Indeed, we do not

specify the dimension dw of the worldsheet yet. An argument sigma is representing several

worldsheet coordinates σµ. It should be stressed again that the differential d should NOT

be mixed up with the worldsheet exterior derivative dw, which does not show up in this

subsection.

Similar as in 2.2, equations (2.57)–(2.63),we will view all geometric objects as functions

of local coordinates and replace the arguments not by phase space fields but by the just

defined super-phase fields which reduces for θ = 0 to the previous case.

T (t,t′,t′′)(σ,θ) ≡ T (t,t′,t′′) (Φ(σ,θ), sΦ(σ,θ),S(σ,θ), sS(σ,θ))
θ=0
= T (t,t′,t′′)(σ) (see (2.58))

(2.77)

For example for a multivector valued form we write

K(k,k′)(σ,θ) ≡ K(k,k′)
(
Φm(σ,θ), sΦm(σ,θ)︸ ︷︷ ︸

cm(σ)

,Sm(σ,θ)
)

= Km1...mk

n1...nk′ (Φ(σ,θ)) sΦm1(σ,θ)︸ ︷︷ ︸
cm1 (σ)

. . . sΦmk(σ,θ)Sn1(σ,θ) . . . Snk′
(σ,θ)

θ=0
=

(2.57)
K(k,k′)(σ) (2.78)

Likewise for all the other examples of 2.2:

e.g. dK(σ,θ) ≡ dK (Φ(σ,θ), sΦ(σ,θ),S(σ,θ), sS(σ,θ)) (2.79)

or o(σ,θ) ≡ o (sΦ(σ,θ), sS(σ,θ)) = cm(σ)pm(σ) = o(σ) (2.80)
[
K(k,k′),d L(l,l′)

]∆

(1)
(σ,θ) ≡

[
K(k,k′),L(l,l′)

](∆)

(1)
(Φ(σ,θ), sΦ(σ,θ),S(σ,θ), sS(σ,θ))

︸ ︷︷ ︸
θ=0
=

(2.61)
[K(k,k′),L(l,l′)]

(∆)

(1)
(σ)

(2.81)

dxm(σ,θ) ≡ sΦm(σ,θ) = cm(σ) (2.82)

dbm(σ,θ) ≡ sSm(σ,θ) = pm(σ) (2.83)

For functions of the type T (t,t′,t′′)(σ,θ) we clearly have

dT (t,t′,t′′)(σ,θ) = s
(
T (t,t′,t′′)(σ,θ)

)
(2.84)

in particular dK(k,k′)(σ,θ) = s
(
K(k,k′)(σ,θ)

)
(2.85)

As all those analytic functions of the basic superfields are superfields (in the sense of 2.73)

themselves, ∂θ can be replaced by s in a θ-expansion, so that we get the important relation

T (t,t′,t′′)(σ,θ) = T (t,t′,t′′)(σ) + θdT (t,t′,t′′)(σ) (2.86)

K(k,k′)(σ,θ) = K(k,k′)(σ) + θdK(k,k′)(σ) (2.87)
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This also implies that dT (σ,θ) and in particular dK(σ,θ) do actually not depend on θ:

dK(k,k′)(σ,θ) = dK(k,k′)(σ) (2.88)

Now comes the nice part:

Proposition 1. For all multivector valued forms K(k,k′), L(l,l′) on the target space man-

ifold, in a local coordinate patch seen as functions of xm,dxm and ∂m as in (2.10), the

following equation holds for the corresponding superfields (2.78)

{K(k,k′)(σ′,θ′), L(l,l′)(σ,θ)}

= δ(θ′ − θ)δ(σ − σ′) · [dK,L]∆(1)︸ ︷︷ ︸
−(−)k−k′ [K,dL]∆(1)

(σ,θ) + ∂θδ(θ − θ′)︸ ︷︷ ︸
=1

δ(σ − σ′)[K,L]∆(1)(σ,θ) (2.89)

where [K,L]∆(1) is the big bracket (2.23) (Buttin’s algebraic bracket, which was previously

just the Poisson bracket, being true now up to a δ(σ − σ′) only after setting θ = θ′) and

[K,dL]∆(1) is the derived bracket of the big bracket (2.49).

Proof Using (2.87), we can simply plug K(σ′,θ′) = K(σ′)+ θ′dK(σ′) and L(σ,θ) =

L(σ) + θdL(σ) into the lefthand side:

{
K(σ′,θ′), L(σ,θ)

}
=

{
K(σ′), L(σ)

}
+ θ′

{
dK(σ′), L(σ)

}
+ (−)k−k′

θ
{
K(σ′),dL(σ)

}

+(−)k−k′
θθ′

{
dK(σ′),dL(σ)

}
(2.90)

=
{
K(σ′), L(σ)

}
+ (θ′ − θ)

{
dK(σ′), L(σ)

}

+θd
{
K(σ′), L(σ)

}
− θθ′d

{
dK(σ′), L(σ)

}
(2.91)

(2.23)
= δ(σ − σ′)

(
[K,L]∆(1) (σ) + θd[K,L]∆(1) (σ)

)
+

+(θ′ − θ)δ(σ − σ′)
(
[dK,L]∆(1) (σ) + θd[dK,L]∆(1) (σ)

)
(2.92)

(2.86)
= δ(σ − σ′) [K,L]∆(1) (σ,θ) + (θ′ − θ)δ(σ − σ′) [dK,L]∆(1) (σ,θ) ¤

There is yet another way to see that the bracket at the plain delta functions is the

derived bracket of the one at the derivative of the delta-function, which will be useful later:

Denote the coefficients in front of the delta-functions by A(K,L) and B(K,L):

{
K(σ′,θ′), L(σ,θ)

}
= A(K,L) · δ(θ′ − θ)δ(σ − σ′) + B(K,L)(σ,θ) ∂θδ(θ − θ′)︸ ︷︷ ︸

=1

δ(σ − σ′)

(2.93)

In order to hit the delta-functions, it is enough to integrate over a patch U(σ) containing
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the point parametrized by σ. We can thus extract A and B via

A(K,L)(σ,θ) =

∫
dθ′

∫

U(σ)
d

dw−1
σ′

{
K(σ′,θ′), L(σ,θ)

}
= (2.94)

=

∫
dθ′

∫
d

dw−1
σ′

{
K(σ′) + θ′dK(σ′), L(σ,θ)

}
= (2.95)

=

∫
d

dw−1
σ′{ dK(σ′)︸ ︷︷ ︸

(2.88)
= dK(σ′,θ)

, L(σ,θ)} (2.96)

B(K,L)(σ,θ) =

∫
dθ′

∫

U(σ)
d

dw−1
σ′(θ′ − θ)

{
K(σ′,θ′), L(σ,θ)

}
= (2.97)

=

∫
d

dw−1
σ′

{
K(σ′,θ′), L(σ,θ)

}
|θ′=θ (2.98)

⇒ A(K,L) = B(dK,L) (2.99)

It is thus enough to collect in a direct calculation the terms at the derivative of the delta-

function and verify that it leads to the big bracket. ¤

2.4 Comment on the quantum case

In (2.14) the embedding via the interior product into the space of operators acting on forms

was interpreted as quantization . In the presence of world-volume dimensions, the partial

derivative as Schroedinger representation for conjugate momenta is no longer appropriate

and one has to switch to the functional derivative. Remember

Φm(σ,θ) = xm(σ) + θcm(σ), dΦm(σ,θ) = cm(σ) = dΦ(σ) (2.100)

Sm(σ,θ) = bm(σ) + θpm(σ), dSm(σ,θ) = pm(σ) = dS(σ) (2.101)

The quantization of the superfields in the Schroedinger representation (conjugate momenta

as super functional derivatives) is consistent with the quantization of the component fields

(see also footnote 12)

Ŝm(σ,θ) ≡
~

i

δ

δΦm(σ,θ)
=

~

i

δ

δcm(σ)
+ θ

~

i

δ

δxm(σ)
(2.102)

⇒
[
Ŝm(σ,θ), Φ̂n(σ′,θ′)

]
=

~

i

(
δ

δcm(σ)
+ θ

δ

δxm(σ)

) (
xn(σ′) + θ′cn(σ′)

)
= (2.103)

=
~

i
δn
m

(
θ − θ′

)
δ(σ − σ′) (2.104)

The quantization of a multivector valued form, containing several operators Ŝ at the same

worldvolume-point, however, leads to powers of delta functions with the same argument

when acting on some wave functional. This is the usual problem in quantum field theory

and requires a model dependent regularization and renormalization. We will stay model

independent here and therefore will not treat the quantum case for a present worldvolume

coordinate σ. Nevertheless it is instructive to study it for absent σ, but keeping θ and

considering “worldline-superfields” of the form

Φm(θ) = xm + θcm, dΦm(θ) = cm (2.105)

Sm(θ) = bm + θpm, dSm(θ) = pm (2.106)
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Quantum operator and commutator simplify to

Ŝm(θ) ≡
~

i

δ

δΦm(θ)
=

~

i

∂

∂cm
+ θ

~

i

∂

∂xm
(2.107)

⇒
[
Ŝm(θ), Φ̂n(θ′)

]
=

~

i
δn
m

(
θ − θ′

)
(2.108)

[
Ŝm(θ), d̂Φ

n
(θ′)

]
=

~

i
δn
m (2.109)

In contrast to σ, products of θ-delta functions are no problem.

The important relation K(θ) = K + θdK (2.87) can be extended to the quantum case

as seen when acting on some r-form.

ıK(k,k′)ρ
(r)(θ)

(2.86)
= ıKρ + θd(ıKρ) (2.110)

(2.33)
= ıKρ + θ

(
ıdKρ + (−)k−k′)ıKdρ

)
= ıK(θ) (ρ(θ)) (2.111)

with ıK(θ) ≡ ıK + θ [d, ıK ] (2.112)

In that sense we have (remember K̂ =
(

~

i

)k′

ıK)

K̂(k,k′)(θ) = K̂(k,k′) + θd̂K (2.113)

with d̂K
(2.33)
=

[
d, K̂

]
(2.114)

where the explicit form of this quantized multivector valued form reads

K̂(k,k′)(θ) ≡

(
~

i

)k′

Km1...mk

n1...nk′ (Φ(θ)) dΦm1(θ)︸ ︷︷ ︸
cm1

. . .dΦmk(θ)
δ

δΦn1(θ)
. . .

δ

δΦnk′ (θ)

(2.115)

In the derivation of (2.112), ıK and ρ both were evaluated at the same θ. Let us eventually

consider the general case:

K̂(k,k′)(θ′)ρ(r)(θ) =
(
K̂ + θ′d̂K

)
(ρ + θdρ) (2.116)

= K̂ρ + θ′d̂Kρ + (−)k−k′
θK̂dρ + (−)k−k′

θθ′d̂Kdρ (2.117)

= K̂ρ + θd
(
K̂ρ

)
+ (θ′ − θ)

(
d̂Kρ + θd

(
d̂Kρ

))
(2.118)

The relation between quantum operators acting on forms and the interior product therefore

becomes modified in comparison to (2.14) and reads

K̂(k,k′)(θ′)ρ(r)(θ) =

(
~

i

)k′ (
ıKρ(θ) + (θ′ − θ) ıdKρ(θ)︸ ︷︷ ︸

(−)k−k′LKρ

)
(2.119)

Proposition 2. For all multivector valued forms K(k,k′), L(l,l′) on the target space man-

ifold, in a local coordinate patch seen as functions of xm,dxm and ∂m as in (2.10), the fol-

lowing equations holds for the corresponding quantized worldline-superfields (2.115) K̂(θ)
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and L̂(θ):

[
K̂(k,k′)(θ′), L̂(l,l′)(θ)

]
=

∑

p≥1

(
~

i

)p (
∂θδ(θ − θ′)︸ ︷︷ ︸

=1

̂[K,L]∆(p)(θ) + δ(θ′−θ) ̂[dK,L]∆(p)(θ)
)

[
K̂(k,k′)(θ′), L̂(l,l′)(θ)

]
ρ(θ̃) =

(
~

i

)k′+l′ (
ı[K,L]∆ρ(r)(θ̃)+δ(θ − θ̃)ı

d[K,L]∆ρ(r)(θ̃) (2.120)

+δ(θ′ − θ)
(
ı[dK,L]∆ρ(r)(θ̃) + δ(θ − θ̃)ı

d[dK,L]∆ρ(r)(θ̃)
) )

Again the algebraic bracket (B.42) comes with the derivative of the delta function

while the derived bracket (2.44) comes with the plain delta functions. But this time the

algebraic bracket is not only the big bracket [ , ]∆(1), but the full one.

Proof Let us just plug in (2.113) into the lefthand side:

[K̂(θ′), L̂(θ)] = [K̂ + θ′d̂K , L̂ + θd̂L]

= [K̂, L̂] + θ′[d̂K , L̂] + (−)k−k′
θ[K̂ , d̂L] − (−)k−k′

θ′θ[d̂K , d̂L]

(2.114)
= [K̂, L̂] + θ

[
d, [K̂ , L̂]

]
+ (θ′ − θ)

(
[d̂K , L̂] + θ

[
d, [d̂K , L̂]

])

= [K̂, L̂](θ) + (θ′ − θ)[d̂K , L̂] (2.121)

Remember now the algebraic bracket (B.41)

[ıK(k,k′) , ıL(l,,l′) ] = ı[K,L]∆ =
∑

p≥1

ı[K,L]∆
(p)

(2.122)

with [K,L]∆(p) ≡ ı
(p)
K L − (−)(k−k′)(l−l′)ı

(p)
L K (2.123)

or likewise written in terms of K̂ and L̂

[K̂(k,k′), L̂(l,l′)] =
∑

p≥1

(
~

i

)p
̂[K,L]∆(p) (2.124)

Due to (2.43) we have exactly the same equation for [d̂K , L̂]. Plugging this back

into (2.121) completes the proof of (2.120). The second equation in the proposition is

just a simple rewriting, when acting on a form, which enables to combine the p-th terms

of algebraic and derived bracket to the complete ones. ¤

2.5 Analogy for the antibracket

In the previous subsection the target space exterior derivative d (realized in the σ-model

phase-space by s) was induced by the the derivative ∂θ with respect to the anticommuting

coordinate. But thinking of the pullback of forms in the target space to worldvolume-

forms, dcan of course also be induced to some extend by the derivative with respect to the

bosonic worldvolume coordinates σµ (including the time, because we are in the Lagrangian

formalism now) or better by the worldvolume exterior derivative dw. To this end, however,
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we have to make a different identification of the basis elements in tangent- and cotangent-

space of the target space with the fields on the worldvolume than before, namely14

dxm → dwxm(σ) = dwσµ∂µxm(σ), ∂m → x+
m(σ) (2.125)

where x+
m is the antifield of xm, i.e. the conjugate field to xm with respect to the an-

tibracket.15 Let us rename

θµ ≡ dwσµ (2.126)

For a target space r-form

ρ(r)(xm,dxm) ≡ ρm1...mr(x)dxm1 · · ·dxmr (2.127)

we define (in analogy to (2.78), but indicating that we allow in the beginning only a

variation in σ)

ρ
(r)
θ (σ) ≡ ρ(r)(xm(σ),dwxm(σ)) = ρm1...mr(x(σ))dwxm1(σ) · · · dwxmr(σ) (2.128)

Attention: this vanishes identically for r > dw (worldvolume dimension).

The worldvolume exterior derivative then induces the target space exterior derivative

in the following sense

dwρ
(r)
θ (σ) = (dρ(r))θ(σ) (2.129)

14This identification resembles the one in [2] with ∂m → pm(z) and dxm → ∂xm(z), or dxm1 · · ·dxmp →

ǫµ1...µp∂µ1xm1(σ) · · · ∂µpxmp(σ) in [4]. It is observed in [2] that the Poisson bracket induces the Dorfman

bracket between sums of vectors and 1-forms (in generalized geometry) and in [4] more generally that the

Poisson-bracket for the p-brane induces the corresponding bracket between sums of vectors and p-forms

(which is called, Vinogradov bracket in [4]). As ∂xm and pm are commuting phase space variables, higher

rank tensors would automatically be symmetrized (only volume forms, i.e. p-forms on a p-brane, can be

implemented, using the epsilon-tensor). Symmetrized tensors and brackets inbetween (e.g. the Schouten

bracket for symmetric multivectors) make sense and one could transfer the present analysis to this setting,

but in general a natural exterior derivative is missing. Therefore the analysis for the above identifications

is done in the antifield-formalism. The appearing derived brackets will also contain the Dorfman bracket

and the corresponding bracket for sums of vectors and p-forms and in that sense the present approach is a

generalization of the observations above.
15The antibracket looks similar to the Poisson-bracket, but their conjugate fields have opposite parity,

which leads to a different symmetry (namely that of a Lie-bracket of degree +1 (or -1), i.e. the one in a

Gerstenhaber algebra or Schouten-algebra, see footnote 18)

(A,B) ≡

Z

d
dw

σ̃

„

δA/x
+
k (σ̃)

δ

δxk(σ̃)
B − δA/δxk(σ̃)

δ

δx+
k (σ̃)

B

«

=

Z

d
dw

σ̃

„

δA/x
+
k (σ̃)

δ

δxk(σ̃)
B − (−)(A+1)(B+1)δB/x

+
k (σ̃)

δ

δxk(σ̃)
A

«

(A,B) = −(−)(A+1)(B+1) (B,A)
`
x

+
m(σ),B

´
=

δ

δxm(σ)
B = −

`
B,x

+
m(σ)

´

(xm(σ),B) = −
δ

δx+
m(σ)

B = (−)B (B,xm(σ))
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Again both sides vanish identically for now r + 1 > dw, which means that in this way

one can calculate with target space fields of form degree not bigger than the worldvolume

dimension. If we want to have the same relation for K
(k,k′)
θ (σ) (defined in the analogous

way), we have to extend the identification in (2.125) by

pm → dwx+
m(σ) (2.130)

and get

dwK
(k,k′)
θ (σ) = (dK(k,k′))θ(σ) (2.131)

with

K
(k,k′)
θ (σ) ≡ K(k,k′)

(
xm(σ),dwxm(σ),x+

m(σ)
)

(2.132)

(dK(k,k′))θ(σ) ≡ dK(k,k′)
(
xm(σ),dwxm(σ),x+

m(σ),dwx+
m(σ)

)
(2.133)

The analysis is thus very similar to that of the previous section.

Proposition 3a. For all multivector valued forms K(k,k′), L(l,l′) on the target space mani-

fold, in a local coordinate patch seen as functions of xm,dxm and ∂m, the following equation

holds for the corresponding sigma-model realizations (2.132), (2.133)

(Kθ(σ′),Lθ(σ)) =
(
[K,dL]∆(1)︸ ︷︷ ︸

−(−)k−k′ [dK,L]∆(1)

)
θ
(σ)δdw (σ − σ′) − (−)k−k′

θµ∂µδdw(σ − σ′)
(
[K,L]∆(1)

)
θ
(σ)

(2.134)

Proof The proof is very similar to that one of proposition 3b (2.148) and is therefore

omitted at this place. ¤

Conjugate superfields. With θµ = dwσµ we have introduced anticommuting coordi-

nates and it would be nice to extend the anti-bracket of the fields xm and x+
m to a super-

antibracket of conjugate superfields. Remember, in the previous subsection we had the

superfields Φm = xm +θcm and its conjugate Sm. There we had one θ and two component

fields. In general the number of component fields has to exceed the worldvolume dimension

dw (the number of θ’s) by one, s.th. we have to introduce a lot of new fields to realize

conjugate superfields. But before, let us define the fermionic integration measure µ(θ) via
∫

µ(θ)f(θ) =
∂

∂θdw
· · ·

∂

∂θ1 f(θ) =
1

dw!
ǫµ1...µdw

∂

∂θµ1
· · ·

∂

∂θµdw
f(θ) (2.135)

The corresponding dw-dimensional δ-function is

δdw(θ′ − θ) ≡ (θ′1 − θ1) · · · (θ′dw − θdw)

=
1

dw!
ǫµ1...µdw

(θ′µ1 − θµ1) · · · (θ′µdw − θµdw )

=

dw∑

k=0

1

k!(dw − k)!
ǫµ1...µdw

θ′µ1 · · · θ′µkθµk+1 · · · θµdw

∫
µ(θ′)δdw(θ′ − θ)f(θ′) = f(θ)

δdw(θ′ − θ) = (−)dwδdw(θ − θ′) (2.136)
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For the two conjugate superfields, call them Φm and Φ+
m, we want to have the canonical

super anti bracket

(
Φ+

m(σ′,θ′),Φn(σ,θ)
)

= δn
mδdw(σ′ − σ)δdw(θ′ − θ) = −

(
Φn(σ,θ),Φ+

m(σ′,θ′)
)

(2.137)

From the above considerations about the fermionic delta function it is now clear, how

these superfields can be defined (they are known as de Rham superfields, because of the

interpretation of θµ as dwσµ; see e.g. [24, 19]):

Φm(σ,θ) ≡ xm(σ) + xm
µdw

(σ)θµdw + xm
µdw−1µdw

(σ)θµdw−1θµdw + . . .

+xm
µ1...µdw

(σ)θµ1 · · · θµdw (2.138)

Φ+
m(σ′,θ′) ≡

1

dw!
ǫµ1...µdw

θ′µ1 · · · θ′µdwx+
m(σ′)+

1

(dw − 1)!1!
ǫµ1...µdw

θ′µ1 · · · θ′µdw−1x+
m

µdw (σ′)

+
1

(dw − 2)!2!
ǫµ1...µdw

θ′µ1 · · · θ′µdw−2x+
m

µdw−1µdw (σ′) + . . .

+
1

dw!
ǫµ1...µdw

x+
m

µ1...µdw (σ′) (2.139)

The component fields with the matching number of worldsheet indices are conjugate to

each other, e.g.

(
x+

m
µ1µ2(σ′),xn

ν1ν2
(σ)

)
= δn

mδµ1µ2
ν1ν2

δdw(σ − σ′) (2.140)

For the notation with boldface symbols for anticommuting variables, the worldvolume was

assumed to be even-dimensional. In this case, one can analytically continue the coordinate

form of multivector-valued forms of the form

K(k,k′)(x,dx,∂) ≡ Km1...mk

n1...nk′dxm1 ∧ · · · ∧ dxmk ∧ ∂n1 ∧ · · · ∧ ∂nk′
(2.141)

to functions of superfields (in odd worldvolume dimension one would get a symmetrization

of the multivector-indices) and redefine K(σ,θ) of (2.78) to

K(k,k′)(σ,θ) ≡ K(k,k′)
(
Φ(σ,θ),dwΦ(σ,θ),Φ+(σ,θ)

)
(2.142)

= Km1...mk

n1...nk′ (Φ)dwΦm1 · · ·dwΦmkΦ+
n1

· · ·Φ+
nk′

(2.143)

All other geometric quantities have to be understood in this new sense now:

T (t,t′,t′′)(σ,θ) ≡ T (t,t′,t′′) (Φ(σ,θ), sΦ(σ,θ),S(σ,θ), sS(σ,θ))︸ ︷︷ ︸
θ=0
= T (t,t′,t′′)(σ)

(see (2.58)) (2.144)

To stay with the examples used in (2.77)–(2.83):

e.g. dK(σ, θ) ≡ dK (Φ(σ, θ), dwΦ(σ, θ), S(σ, θ), dwS(σ, θ)) (compare (2.32)) (2.145)

or o(σ, θ) ≡ o (dwΦ(σ, θ), dwS(σ, θ))

= dwΦm(σ, θ)dwSm(σ, θ) (compare o = cmpm) (2.146)
[
K(k,k′),d L(l,l′)

]∆

(1)
(σ, θ) ≡

[
K(k,k′),L(l,l′)

](∆)

(1)
(Φ(σ, θ), dwΦ(σ, θ), S(σ, θ), dwS(σ, θ))

dxm(σ, θ) ≡ dwΦm(σ, θ)

(d∂m)(σ, θ) ≡ (dbm)(σ, θ) ≡ dwSm(σ, θ) (2.147)
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Note that the former relation K(σ,θ) = K(σ) + θdK(σ) does NOT hold any longer with

those new definitions! Nevertheless we get a very similar statement as compared to propo-

sitions 2 on page 18:

Proposition 3b. For all multivector valued forms K(k,k′), L(l,l′) on the target space mani-

fold, in a local coordinate patch seen as functions of xm,dxm and ∂m, the following equation

holds for even worldvolume-dimension dw for the corresponding superfields (2.142):

(K(σ′,θ′),L(σ,θ)) = δdw(σ′ − σ)δdw(θ′ − θ) [K,dL]∆(1)︸ ︷︷ ︸
−(−)k−k′ [dK,L]∆(1)

(σ,θ) +

−(−)k−k′
θµ∂µδdw(σ − σ′)δdw(θ′ − θ) [K,L]∆(1) (σ,θ) (2.148)

where [K,L]∆(1) is the big bracket (2.23) and [K,dL]∆(1) is the derived bracket of the big

bracket (2.49).

Note that σ and θ have switched their roles compared to the previous subsection (2.89),

where the algebraic bracket came together with the derivative with respect to θ of the

delta-functions, while now it comes along with ∂µ of the delta-functions.

Proof Let us use again the second idea in the proof of proposition 2, i.e. first collect

the terms with derivatives of the delta function, only to show that one gets the algebraic

bracket, and after that argue that the term with plain delta functions is its derived bracket.

In doing this, however, we will need to prove an extension of the above proposition to objects

like dK (or more general an object T (t,t′,t′′) as in (2.28)) that contain the basis element pm,

which is then replaced by dwSm as e.g. in (2.145).

(i) The antibracket between two such objects T and T̃ gets contributions to the derivative

of the delta-function only from the antibrackets between dwΦm and Φ+
m and between Φm

and dwΦ+
m (compare (2.137))

(
Φ+

m(σ′,θ′),dwΦn(σ,θ)
)

= δn
mθµ∂µδdw(σ′ − σ)δdw(θ′ − θ) (2.149)

(
dwΦn(σ′,θ′),Φ+

m(σ,θ)
)

= δn
mθµ∂µδdw(σ′ − σ)δdw(θ′ − θ) (2.150)

(
dwΦ+

m(σ′,θ′),Φn(σ,θ)
)

= −δn
mθµ∂µδdw(σ′ − σ)δdw (θ′ − θ) (2.151)

(
Φn(σ′,θ′),dwΦ+

m(σ,θ)
)

= −θµ
(
Φn(σ′,θ′),∂µΦ

+
m(σ,θ)

)

= δn
mθµ∂µδdw(σ′ − σ)δdw(θ′ − θ) (2.152)

The last case is the only one where we had to take care of an extra sign stemming from θ

jumping over the graded comma. Comparing this to (2.5), where we had

{bm, cn} = δn
m (2.153)

{cn, bm} = δn
m (2.154)

{pm, xn} = δn
m (2.155)

{xn, pm} = −δn
m (2.156)

one recognizes that the only difference is an overall odd factor θµ∂µδdw(σ′ − σ)δdw(θ′ −

θ) (the delta-function for θ is an even object for even worldvolume dimension dw) and
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an additional minus sign for the lower two lines, but the corresponding indices just get

contracted like for the Poisson bracket. After such a bracket of basis elements has been

calculated (which happens just between the remaining factors of T (at σ′) on the left and

the remaining factors of T̃ (at σ) on the right) this overall odd factor has to be pulled to

the very left which gives an additional factor of (−)t−t′ (in the notation of (2.28)) plus an

additional minus sign for the upper two lines which compensates the relative minus sign of

before and we get just an overall factor of −(−)t−t′θµ∂µδdw(σ′ − σ)δdw(θ′ − θ) in all cases

at the very left as compared to the Poisson-bracket. The remaining terms are still partly

at σ and partly at σ′, but using

A(σ)B(σ′)∂µδ(σ − σ′) = A(σ)∂µB(σ)δ(σ − σ′) + A(σ)B(σ)∂µδ(σ − σ′) ∀A,B (2.157)

we can take all remaining factors in T (σ′,θ′) at σ, while θ′ is set to θ anyway by the

δ-function. We have thus verified one of the coefficients of the complete antibracket:

(T (σ′,θ′), T̃ (σ,θ)) = −(−)t−t′θµ∂µδdw(σ − σ′)δdw(θ′ − θ)
[
T, T̃

]∆

(1)
(σ,θ)

+δdw(σ − σ′)δdw(θ′ − θ)A(σ,θ) (2.158)

with A(σ,θ) yet to be determined.

(ii) It remains to show that A(σ,θ) is a derived expression of
[
T, T̃

]∆

(1)
. A hint to this fact

is already given in (2.157), but this is not enough, as there is also a contribution from the

(Φm,Φ+
n )-brackets. In order to get a precise relation between A(σ,θ) and

[
T, T̃

]∆

(1)
(σ,θ),

let us see how one can extract them from the complete antibracket. In order to hit the delta

functions with the integration, it is enough to integrate over the patch U(σ) containing the

point which is parametrized by σµ. The last term in (2.158) is the only one contributing

when integrating over σ′ and θ

A(σ,θ) =

∫

U(σ)
ddwσ′

∫
µ(θ′) (T (σ′,θ′), T̃ (σ,θ)) (2.159)

That the first term on the righthand side of (2.158) does not contribute is not obvious

as U(σ) might have a boundary. However, for this term one ends up integrating a dw-

dimensional delta-function over a boundary of dimension not higher than dw − 1, so that

one is left with an at least one-dimensional delta-function on the boundary which vanishes

as the boundary of the open neighbourhood U(σ) of σ of course nowhere hits σ.

Extracting the algebraic bracket
[
T, T̃

]∆

(1)
is a bit more tricky. One can do it via

for any fixed

index λ
:

[
T, T̃

]∆

(1)
(σ,θ) = (2.160)

−(−)t−t′
∫

U(σ)
ddwσ′

∫
µ(θ′)

(
eσ′λ

eσλ
− 1

)
∂

∂θλ
(T (σ′,θ′),T̃ (σ,θ))
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The boundary term proportional to

(
eσ′λ

eσλ − 1

)
δdw(σ − σ′) appearing above on the right-

hand side after partial integration vanishes as σ′ in the prefactor is set to σ via the delta

function.

The claim is now that A(σ,θ) = −(−)t−t′
[
dT, T̃

]∆

(1)
(σ,θ). So let us calculate the

righthand side via (2.160):

[
dT, T̃

]∆

(1)
(σ,θ) = −(−)t+1−t′

∫

U(σ)
ddwσ′

∫
µ(θ′)

(
eσ′λ

eσλ
− 1

)
∂

∂θλ
(dT (σ′,θ′),T̃ (σ,θ))

= −(−)t+1−t′
∫

ddwσ′

∫
µ(θ′)

(
eσ′λ

eσλ
− 1

)
∂

∂θλ
θ′µ∂′

µ(T (σ′,θ′),T̃ (σ,θ))

(T ,T̃ ) contains in both terms a plain δ-function for the fermionic variables θ, so that we

can replace θ′ by θ. Integration by parts of ∂′
µ (where possible boundary terms again

do not contribute because of the vanishing of the delta function and its derivative on the

boundary) delivers the desired result
[
dT, T̃

]∆

(1)
(σ,θ) = −(−)t−t′

∫
ddwσ′

∫
µ(θ′) (T (σ′,θ′),T̃ (σ,θ)) = −(−)t−t′A(σ,θ)

(2.161)

This completes the proof of proposition 3b. ¤

3. Applications in string theory or 2d CFT

In the previous section the dimension of the worldvolume was arbitrary or even dimensional.

The appearance of derived brackets (including e.g. the Dorfman bracket) is thus not a

special feature of a 2-dimensional sigma-model like string theory. There are, however,

special features in string theory. Currents in string theory (which have conformal weight

one) naturally are sums of 1-forms and vectors, if one takes the identification ∂1x
m(σ) ↔

dxm and pm(σ) ↔ ∂m, as in [2] (see footnote 14), e.g. ∂xm = ∂1x
m−∂0x

m=̂dxm−ηmn∂n .

This is closely related to the identification in our previous section in the antifield formalism.

In addition, only in two dimensions a single θ can be interpreted as a worldsheet Weyl spinor

(in 1 dimension it can be seen as a Dirac-spinor, but in higher dimensions the interpretation

of θ as worldvolume spinor breaks down). As we ended the last section with the antifield

formalism, which therefore is perhaps still more present, let us start this section in the

reversed order, beginning with the application in the antifield formalism.

3.1 Poisson sigma-model and Zucchini’s “Hitchin sigma-model”

Remember for a moment the Poisson-σ-model [25, 24]. It is a two-dimensional sigma-model

(dw = 2) of the form

S0 =

∫

Σ
ηmdwxm +

1

2
Pmn(x)ηmηn (3.1)

where ηm is a worldsheet one-form. This model is topological if and only if the Poisson-

structure Pmn(x) is integrable, i.e. the Schouten-bracket of P with itself vanishes

S0 topological ⇐⇒ [P ,P ] = 0 (3.2)
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It gives on the one hand a field theoretic implementation of Kontsevich’s star product [24]

and is on the other hand related to string theory via a topological limit (big antisymmetric

part in the open string metric), which leads to the relation between string theory and

noncommutative geometry.

The necessary ghost fields for the action can be introduced by extending x and η to

de Rham superfields as in (2.138), (2.139)

Φm(σ,θ) ≡ xm(σ) + xm
µ (σ)

︸ ︷︷ ︸
ǫµνη+νn

θµ + xm
µ1µ2

(σ)
︸ ︷︷ ︸

− 1
2
εµ1µ2β+ m

θµ1θµ2 (3.3)

Φ+
m(σ′,θ′) ≡

1

2!
ǫµ1µ2x

+
m

µ1µ2(σ′)
︸ ︷︷ ︸

≡βm(σ′)

+θ′µ1 ǫµ1µ2x
+
m

µ2(σ′)︸ ︷︷ ︸
ηµ1m

+
1

2
ǫµ1µ2θ

′µ1θ′µ2x+
m(σ′) (3.4)

One can use Hodge-duality to rename some component fields as indicated. βm is then the

ghost field related to the gauge symmetry. The action including ghost fields and antifields

simply reads

S =

∫
d2σ

∫
µ(θ) Φ+

mdwΦm +
1

2
Pmn(Φ)Φ+

mΦ+
n (3.5)

The expression under the integral corresponds to the tensor −δm
ndxm∧∂n+ 1

2Pmn∂m∧∂n

and the antibracket in the master-equation (S, S) implements the Schoutenbracket on P ,

which is a well known relation. Therefore we will concentrate on a second example, which

is very similar, but less known.

Zucchini suggested in [19] a 2-dimensional sigma-model which is topological if a gen-

eralized complex structure in the target space is integrable (see subsection C.2 on page 53

and C.4 on page 58 to learn more about generalized complex structures). His model is of

the form

S =
∫

d2σ
∫

µ(θ)
(
Φ+

mdwΦm +
)

1
2Pmn(Φ)Φ+

mΦ+
n − 1

2Qmn(Φ)dwΦmdwΦn − Jn
mdwΦmΦ+

n

(3.6)

where Pmn, Qmn and Jm
n are the building blocks of the generalized complex struc-

ture (C.22)

JM
N =

(
Jm

n Pmn

−Qmn −Jn
m

)
(3.7)

The first term of (3.6) can be absorbed by a field redefinition as already observed in [20].

Ignoring thus the first term and using our notations of before, S can be rewritten as

S =

∫
d2σ

∫
µ(θ)

1

2
J (Φ,dwΦ,Φ+) (3.8)

Calculating the master equation explicitely and collecting the terms which combine to the

lengthy tensors for the integrability condition (see (C.60)–(C.61)) is quite cumbersome, so
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we can enjoy using instead proposition 3b on page 25. For a worldsheet without boundary

its integrated version reads

(∫
ddwσ′

∫
µ(θ′)K(σ′,θ′),

∫
ddwσ

∫
µ(θ)L(σ,θ)

)
=

∫
ddwσ

∫
µ(θ) [K,dL]∆(1) (σ,θ)

(3.9)

which leads to the relation

(S, S) = 0 ⇐⇒

∫
d2σ

∫
µ(θ) [J ,dJ ]∆(1) (σ,θ) = 0 (3.10)

The derived bracket of the big bracket of J with itself contains already the Nijenhuis tensor

(see in the appendix in equation (C.71) and in the discussion around)

[J ,dJ ]∆(1) = NM1M2M3t
M1t

M2t
M3 − 4J JIJIM t

MpJ (3.11)

J 2=−1
= NM1M2M3t

M1t
M2t

M3 + 4o (3.12)

t
M = (dxm,∂m), pJ = (pj , 0) (3.13)

o(dx, p) = dxmpm (3.14)

For J 2 = −1 the last term is proportional to the generator o (remember (2.8)). In (3.10),

however, it appears with dx and p replaced by the superfields as in (2.146)

o(σ,θ) = dwΦm(σ,θ)dwSm(σ,θ) = −dw(dwΦm(σ,θ)Sm(σ,θ)) (3.15)

which is a total worldsheet derivative and therefore drops during the integration. We are

left with the generalized Nijenhuis tensor as a function of superfields

N (σ,θ) = NM1M2M3(Φ)tM1t
M2t

M3 (3.16)

with t
M ≡ (dwΦm,Φ+

m) (3.17)

Written in small indices

N (σ,θ) = Nm1m2m3(Φ)dwΦm1dwΦm1dwΦm1︸ ︷︷ ︸
=0

+3N n
m1m2(Φ)Φ+

n dwΦm1dwΦm2

+3Nn
m1m2(Φ)dwΦnΦ+

m1
Φ+

m2
+ Nm1m2m3(Φ)Φ+

mΦ+
mΦ+

m (3.18)

One realizes that the first term vanishes identically (as mentioned in [19]) and only the

remaining three tensors are required to vanish in order to satisfy (3.10).

3.2 Relation between a second worldsheet supercharge and generalized complex

geometry

In [15] the relation between an extended worldsheet supersymmetry in string theory and

the presence of an integrable generalized complex structure was explored. Zabzine clarified

in [18] the relation in an model independent way in a Hamiltonian description. The struc-

tures appearing there are almost the same that we have discussed before although we have

to modify the procedure a little bit due to the interpretation of θ as a worldsheet spinor.
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Consider a sigma-model with 2-dimensional worldvolume (worldsheet) with manifest

N = 1 supersymmetry on the worldsheet. In the phase space there is only one σ-coordinate

left. Let us denote the corresponding superfields, following loosely [18], by

Φm(σ,θ) ≡ xm(σ) + θλm(σ) (3.19)

Sm(σ,θ) ≡ ρm(σ) + θpm(σ) (3.20)

In comparison to section 2.3, there is a change of notation from cm → λm and bm → ρm

as b and c suggest the interpretation as ghosts which is not true in this case, where λ

and ρ are worldsheet fermions. Introduce now, following Zabzine, the generator Qθ of the

manifest SUSY and the corresponding covariant derivative Dθ

Qθ ≡ ∂θ + θ∂σ Dθ ≡ ∂θ − θ∂σ (3.21)

with the SUSY algebra

[Qθ,Qθ] = 2∂σ = − [Dθ,Dθ] [Qθ,Dθ] = 0 (3.22)

Qθ is the sum of two nilpotent differential operators, namely ∂θ and θ∂σ. Acting on the

Superfields Φm and Sm, they induce the differentials s and s̃ on the component fields,

which are in turn generated via the Poisson bracket by phase space functions Ω (the same

as (2.66)) and Ω̃.

Ω ≡

∫
dσ λkpk (3.23)

Ω̃ = −

∫
dσ ∂σxkρk (3.24)

sxm ≡ {Ω, xm} = λm ↔ dxm, sρm ≡ {Ω,ρm} = pm ↔ d(∂m), (3.25)

s̃λm ≡
{
Ω̃,λm

}
= −∂σxm, s̃pk = −∂σρk =

{
Ω̃, pk

}
, (3.26)

sΦm = ∂θΦm, sSm = ∂θSm s̃Φm = θ∂σΦm, s̃Sm = θ∂σSm (3.27)

The Poisson-generator for the SUSY transformations of the component fields induced by16

Qθ is thus the sum of the generators of s and s̃:

Q = Ω + Ω̃ =

∫
dσ λkpk − ∂σxkρk = −

∫
dσ

∫
dθ QθΦkSk (3.28)

In (2.73) superfields were defined via ∂θY = sY in order to implement the exterior deriva-

tive directly with ∂θ. In that sense Φ, S, dΦ, dS and all analytic functions of them were

16We have

QθΦm = λ
m + θ∂σxm, QθSm = pm + θ∂σρm

DθΦm = λ
m(σ) − θ∂σxm, DθSm = pm − θ∂σρm

δεxm = ελ
m, δελ

m = −ε∂σxm

δερm = εpm, δεpm = −ε∂σρm
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superfields. In the context of worldsheet supersymmetry, one prefers of course a supersym-

metric covariant formulation. Let us therefore define in this subsection proper superfields

via

Y is a superfiled : ⇐⇒ QθY
!
= {Q, Y } = (s+ s̃)Y (3.29)

which holds for Φ, S,DθΦ, DθS, all analytic functions of them (like our analytically con-

tinued multivector valued forms) and worldsheet spatial derivatives ∂σ thereof (but not

for e.g. QθΦ. This means that although we have QθΦ = (s+ s̃)Φ this does not hold for a

second action, i.e. Q2
θΦ 6= (s+ s̃)2Φ, which explains the somewhat confusing fact that the

Poisson-generator Q has the opposite sign in the algebra than Qθ

{Q,Q} = −2P (3.30)

where we introduced the phase-space generator P for the worldsheet translation induced

by ∂σ

P ≡

∫
dσ ∂σxkpk + ∂σλkρk =

∫
dσ

∫
dθ ∂σΦkSk (3.31)

The same phenomenon appears for the differentials s and s̃. The graded commutator of ∂θ

and θ∂σ is the worldsheet derivative [∂θ,θ∂σ] = ∂σ, while the algebra for s and s̃ has the

opposite sign

[s, s̃]Y (σ,θ) = −∂σY (σ,θ) (3.32)

sΩ̃ =
{
Ω, Ω̃

}
= −P = s̃Ω (3.33)

One major statement in [18] is as follows: Making a general ansatz for a generator of a

second, non-manifest supersymmetry, of the form (some signs are adopted to our conven-

tions)

Q2 ≡
1

2

∫
dσ

∫
dθ (Pmn(Φ)SmSn − Qmn(Φ)DθΦmDθΦn + 2Jm

n(Φ)SmDθΦn) (3.34)

and requiring the same algebra as for Q in (3.30)

{Q2,Q2} = −2P (3.35)

(
{Q,Q2} = 0

)
(3.36)

is equivalent to

JM
N ≡

(
Jm

n Pmn

−Qmn −Jn
m

)
(3.37)

being an integrable generalized complex structure (see in the appendix C.2 on page 53

and C.4 on page 58). On a worldsheet without boundary, the second condition is actually

superfluous, because it is already implemented via the ansatz: The expression in the integral
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is an analytic function of superfields and therefore a superfield itself. According to (3.29)

we can replace at this point the commutator with Q with the action of Qθ and get

{Q,Q2} =

∫
dσ

∫
dθ Qθ(. . .) =

∫
dσ ∂σ(. . .) = 0 (3.38)

For the other condition, the actual supersymmetry algebra (3.35), the aim of the present

considerations should now be clear. The generalized complex structure J itself is a sum of

multivector valued forms

J ≡ JMN (x)tM tN ≡ Pmn(x)∂m ∧ ∂n − Qmn(x)dxmdxn + 2Jm
n(x)∂m ∧ dxn (3.39)

which can be seen as a function of x and the basis elements

J = J (x,dx,∂) (3.40)

In 2.3 we replaced the arguments of functions like this with “superfields” xm → Φm,

dxm → ∂θΦm and ∂m → Sm. The name superfield might have been misleading, as ∂θΦ is

only a superfield in the sense that it implements the target-space exterior derivative via ∂θ,

but it is not a superfield in the sense of worldsheet supersymmetry. In a supersymmetric

theory one prefers a supersymmetric covariant formulation. Working with ∂θΦ as before

is therefore not desirable and we replace ∂θΦ by DθΦ, leading directly to Q2 (3.34) which

now can be written as

Q2 =
1

2

∫
dσ

∫
dθJ (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ)) (3.41)

Apart from the change ∂θΦ → DθΦ we expect from the previous section that the Poisson

bracket of Q2 with itself induces some algebraic and some derived bracket of J with itself

which then corresponds to the integrability condition for J . This is indeed the case, but

we first have to study the changes coming from ∂θΦ → DθΦ. In other words, we need

a new formulation of proposition 1 (2.89) in the case of two-dimensional supersymmetry

(Proposition 1 is of course still valid, but it is not formulated in a supersymmetric covariant

way. It should, however, be applicable to e.g. BRST symmetries ). Let us redefine the

meaning of K(σ,θ) in (2.78) for a multivector valued form K(k,k′)

K(k,k′)(σ,θ) ≡ K(k,k′)
(
Φm(σ,θ),DθΦm(σ,θ),Sm(σ,θ)

)
(3.42)

= Km1...mk

n1...nk′ (Φ(σ,θ)) DθΦm1(σ,θ) . . . DθΦmk(σ,θ) ×

×Sn1(σ,θ) . . . Snk′
(σ,θ)

θ=0
→

(2.57)
K(k,k′)(σ)
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Likewise for all the other examples in (2.77)–(2.83):

T (t,t′,t′′)(σ,θ) ≡ T (t,t′,t′′) (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ),DθS(σ,θ))︸ ︷︷ ︸
θ=0
= T (t,t′,t′′)(σ)

(see (2.58))

e.g. dK(σ,θ) ≡ dK (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ),DθS(σ,θ))

or o(σ,θ) ≡ o (DθΦ(σ,θ),DθS(σ,θ))
(2.8)
= DθΦm(σ,θ)DθSm(σ,θ)

θ=0
=

(2.60)
o(σ)

[
K(k,k′),d L(l,l′)

]∆

(1)
(σ,θ) ≡ [K(k,k′),L(l,l′)]

(∆)
(1) (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ),DθS(σ,θ))

︸ ︷︷ ︸
θ=0
=

(2.61)

[
K(k,k′),L(l,l′)

](∆)

(1)
(σ)

dxm(σ,θ) ≡ DθΦm(σ,θ) = λm(σ) − θ∂σxm(σ)

d∂m(σ,θ) ≡ DθSm(σ,θ) = pm(σ) − θ∂σρm(σ)

Expanding K in θ yields

K(k,k′)(σ,θ) = K(k,k′)(σ) + θ
(

∂θ′K(k,k′)(σ,θ′)
∣∣∣
θ′=0

)
(3.43)

= K(k,k′)(σ) + θ
(

Qθ′K(k,k′)(σ,θ′)
∣∣∣
θ′=0

)
(3.44)

As K is a superfield, we can replace Qθ by s+ s̃

K(k,k′)(σ,θ) = K(k,k′)(σ) + θ(s+ s̃)K(k,k′)(σ) (3.45)

= K(k,k′)(σ) + θ
(
(d+ ıv)K

(k,k′)
)

(σ)
∣∣∣
vk→−∂σxk

(3.46)

This is the analogue to the non-supersymmetric (2.87) and delivers the exterior derivative

which will lead to the appearance of the derived bracket. The relation between s̃ and the

inner product with a vector should perhaps be clarified. Remember that all multivector

forms at θ = 0, K(k,k′)(σ), are analytic functions of the component fields xm,λm and ρm

. But among those fields, s̃ acts only on λm and we can express it with partial derivatives

(instead of functional ones) when acting on K:

s̃K(σ) = −∂σxm ∂

∂λm K(x,λ,ρ) = ıvK(σ)|vk=−∂σxk (3.47)

in the Poisson bracket of s̃K with another multivector valued form L at θ = 0, nothing

acts on vk = −∂σxk (which would produce a derivative of a delta function), as L does not

contain pk. Therefore we have

{
s̃K(σ′), L(σ)

}
= [ıvK,L](σ)|vk=−∂σxk δ(σ − σ′) (3.48)

which we will need below. For superfields we have Y (σ,θ) = Y (σ)+θ(s+ s̃)Y (σ). Applying

the same to v yields

vk(σ) + θ(s+ s̃)vk(σ) = −∂σxk − θ(s+ s̃)∂σxk(σ) = −∂σxk − θ∂σλk(σ) = −∂σΦk (3.49)
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Proposition 1b. For all multivector valued forms K(k,k′), L(l,l′) on the target space mani-

fold, in a local coordinate patch seen as functions of xm,dxm and ∂m, the following equation

holds for the corresponding worldsheet-superfields (3.42)

{K(k,k′)(σ′,θ′), L(l,l′)(σ,θ)} = Dθ

(
δ(θ−θ′)δ(σ−σ′)

)
[K,L]∆(1) (σ,θ)+δ(θ′ − θ)×

×δ(σ − σ′)
(

[dK,L]∆(1)(σ,θ)
︸ ︷︷ ︸
−(−)k−k′ [K,dL]∆(1)

+ [ıvK,L]∆(1)(σ,θ)
︸ ︷︷ ︸

−(−)k−k′ [K,ıvL]

∣∣∣
vk=−∂σΦk

)

(3.50)

where e.g. [dK,L]∆(1)(σ,θ) ≡ [dK,L]∆(1) (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ),DθS(σ,θ)). The inte-

grated version for a worldsheet without boundary reads
{∫

dσ′

∫
dθ′K(k,k′)(σ′,θ′),

∫
dσ

∫
dθ L(l,l′)(σ,θ)

}
= (3.51)

= (s+ s̃)

∫
dσ

(
[K,dL]∆(1) − (−)k−k′

[ıvK,L]∆(1)

∣∣∣
vk=−∂σxk

)
(σ)

Proof Let us use (3.45) for both multivector valued fields and plug into the lefthand

side of (3.50)
{
K(σ′,θ′), L(σ,θ)

}
=

=
{
K(σ′) + θ′(s+ s̃)K(σ′) , L(σ) + θ(s+ s̃)L(σ)

}

=
{
K(σ′), L(σ)

}
+ θ′

{
(s+ s̃)K(σ′), L(σ)

}
+ (−)k−k′

θ
{
K(σ′), (s+ s̃)L(σ)

}

+ (−)k−k′
θθ′

{
(s+ s̃)K(σ′), (s+ s̃)L(σ)

}

=
{
K(σ′), L(σ)

}
+ (θ′ − θ)

{
(s+ s̃)K(σ′), L(σ)

}
+ θ(s+ s̃)

{
K(σ′), L(σ)

}

+ θ′θ(s+ s̃)
{
(s+ s̃)K(σ′), L(σ)

}
− θ′θ

{
(s+ s̃)(s+ s̃)K(σ′), L(σ)

}

= (1 + θ(s+ s̃))
{
K(σ′), L(σ)

}
+ (θ′ − θ) (1 + θ(s+ s̃))

{
(s+ s̃)K(σ′), L(σ)

}

− θ′θ
{

[s, s̃]︸︷︷︸
−∂σ′

K(σ′), L(σ)
}

= δ(σ − σ′) (1 + θ(s+ s̃)) [K,L]∆(1) (σ) + (θ′ − θ) (1 + θ(s+ s̃))
{
(s+ s̃)K(σ′), L(σ)

}

− (θ′ − θ)θ∂σδ(σ − σ′) [K,L]∆(1) (σ)

Now let us make use of (3.48) and (3.49) to arrive at
{
K(σ′,θ′), L(σ,θ)

}
= Dθ

(
δ(θ − θ′)δ(σ − σ′)

)
[K,L]∆(1) (σ,θ)

+δ(θ′ − θ)δ(σ − σ′) [(d+ ıv)K,L]∆(1) (σ,θ)
∣∣∣
vk=−∂σΦk

which is the first equation of the proposition. Integrating over θ′ and σ′ results in
∫

dσ′

∫
dθ′

{
K(σ′,θ′), L(σ,θ)

}
= [(d+ ıv)K,L]∆(1) (σ,θ)

∣∣∣
vk=−∂σΦk

= [(d+ ıv)K,L]∆(1) (σ)
∣∣∣
vk=−∂σxk

+θ(s+ s̃) [(d+ ıv)K,L]∆(1) (σ)
∣∣∣
vk=−∂σxk
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A second integration picks out the linear part in θ and adjusting the order of the integra-

tions gives the additional sign in (3.51). ¤

Application to the second supercharge Q2. We are now ready to apply the propo-

sition in the integrated form (3.51) to the question of the existence of a second worldsheet

supersymmetry Q2. Remember, we want {Q2,Q2} = −2P . Due to the proposition, the

lefthand side can be written as

{Q2,Q2} =
1

4
(s+ s̃)

∫
dσ

(
[J ,dJ ]∆(1) − [ıvJ ,J ]∆(1)

∣∣∣
v=−∂σxkρk

)
(σ) (3.52)

For J 2 = −1, the second term under the integral simplifies significantly

−
1

4

∫
dσ[ıvJ ,J ]∆(1)

∣∣∣
v=−∂σxkρk

= −

∫
dσ vKJK

LJL
M

tM

∣∣∣
v=−∂σxkρk

= −

∫
dσ ∂σxkρk = Ω̃ (3.53)

Recalling that

(s+ s̃)Ω̃ = sΩ̃ = s̃Ω = (s+ s̃)Ω = −P (3.54)

and Ω =

∫
dσ o(σ) (see (2.60)) (3.55)

we can rewrite (3.52) as

⇒ {Q2,Q2} =
1

4
(s+ s̃)

(∫
dσ [J ,dJ ]∆(1) + 4Ω

)
(3.56)

=
1

4
(s+ s̃)

(∫
dσ

(
[J ,dJ ]∆(1) − 4o

)
(σ)

)
+ 2 s̃Ω︸︷︷︸

−P

(3.57)

The righthand side clearly equals −2P for

[J ,dJ ]∆(1) − 4o = 0 (3.58)

which is again (according to (C.96)) just the integrability condition for the generalized

almost complex structure J .

4. Conclusions

We have seen two closely related mechanisms in sigma-models with a special field content

which lead to the derived bracket of the target space algebraic bracket by the target space

exterior derivative. This exterior derivative is implemented in the sigma model in one case

via the derivative with respect to a (worldvolume-) Grassmann coordinate and in the other

case via the derivative with respect to the worldvolume coordinate itself. In the latter

case this derivative has to be contracted with (worldvolume-) Grassmann coordinates in

order to be an odd differential. This leads to the problem that higher powers of the basis

elements vanish, as soon as the power exceeds the worldvolume dimension as it happens
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in Zucchini’s application. A big number of Grassmann-variables is therefore advantageous

in that approach. For the other mechanism one rather prefers to have only one single

Grassmann variable as there is no need for any contraction. There is one worldvolume

dimension more in the Lagrangian formalism and for that reason it was preferable to apply

there the mechanism with worldvolume derivatives and use the other one in the Hamiltonian

formalism.

If one does not consider antisymmetric tensors of higher rank, but only vectors or one-

forms (or forms of worldvolume-dimension), the partial worldvolume derivative without a

Grassmann-coordinate is enough. There is either no need for antisymmetrization or it can

be performed with the worldvolume epsilon tensor. The nature of the mechanism remains

the same and leads to the observations in [2, 4] that the Poisson bracket implements the

Dorfman bracket for sums of vectors and one-forms and the corresponding derived bracket

for sums of vectors and p-forms on a p-brane [4]. In that sense, the present article is a

generalization of those observations.

There remain a couple of things to do. It should be possible to implement in the same

manner by e.g. a BRST differential other target space differentials which can depend on

some extra-structure and repeat the same analysis. Symmetric tensors then become more

interesting as well, because they need such an extra-structure anyway for a meaningful

differential. From the string theory point of view, the application of extended worldsheet

supersymmetry corresponds to applications in the RNS string. But generalized complex

geometry contains the tools to allow RR-fluxes, which are hard to treat in RNS. It would

therefore be nice to find some topological limit in a string theory formalism which is

extendable to RR-fields, like the Berkovits-string [26], leading to a topological sigma model

like Zucchini’s, in order to learn more about the correspondence between string theory and

generalized complex geometry.
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A. Notation and conventions

Within the article, a lot of different types of tensors have to be denoted. The choices and

sometimes some logic behind, will be presented here.
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World-volume-coordinates are denoted by σµ, target-space coordinates by xm, target

space vector-fields by a, b, . . . or v,w, . . ., 1-forms by small Greek letters α, β, . . . and gener-

alized T ⊕T ∗-vectors by a, b, . . . or v,w, . . . . For an explicit split in vector and 1-form, the

letters from the beginning of the alphabet are better suited, as there is a better correspon-

dence between Latin and Greek symbols or one can visually better distinguish between

Latin and Greek symbols. Compare e.g. a = a + α and v = v + (?ν).

Higher order forms will be in general denoted by α(p), β(q), . . . or ω(p), η(q), ρ(r), . . .. There

will be exceptions, however , for specific forms like the B-field B = Bmndx
m ∧ dxn. Fol-

lowing this logic, we will also denote multivectors (tensors with antisymmetric upper in-

dices) by small letters, indicating their multivector-degree in brackets: a(p), b(q), . . . or

v(p), w(q), . . .. There are again exceptions, e.g. a Poisson structure will often be denoted

by P = Pmn∂m ∧ ∂n. The most horrible exception is the one of the beta-transformation,

which is denoted by a large beta β
mn

in (C.47), in order to distinguish it from forms.

Tensors of mixed type will be denoted by capital letters where we denote in brackets

first the number of lower indices and then the number of upper indices, e.g. T (p,q). Most

of the time, we treat multivector valued forms, e.g. the lower indices as well as the upper

indices are antisymmetrized. The letters denoting form degree and multivector degree will

often be adapted to the letter of the tensor, e.g. K(k,k′), L(l,l′), . . .

Attention: k and l are also used as dummy indices! Sometimes (I’m sorry for

that) the same letter appears with different meanings. However, in those situations the

dummy indices will carry indices which might even be one of the degrees k or k′, e.g.

K...
k1...kk′Lkk′ ...k1...

....

Working all the time with graded algebras with a graded symmetric product (the wedge

product), everything in this article has to be understood as graded. i.e. with commutator

we mean the graded commutator and with the Poisson bracket the graded Poisson bracket.

They will not be denoted differently than the non-graded operations. Relevant for the sign

rules is the total degree which we define to be form degree minus the multivector degree.

In the field language, it corresponds to the total ghost number which is the pure ghost

number minus the antighost number. It will be denoted by

| K(k,k′) | = k − k′ (A.1)

As only degrees appear in the exponent of a minus sign, a simplified notation is used there

(−)A ≡ (−1)|A|, (−)A+B ≡ (−)|A|+|B|, (−)AB ≡ (−)|A||B| ∀A,B (A.2)

For the Poisson bracket, the following (less common) sign convention is chosen:

{pm, xn} = δn
m = −{xn, pm} (A.3)

{bm, cn} = δn
m = −(−)bc {cn, bm} (A.4)

Derivatives with respect to xm are denoted by ∂
∂xm f ≡ ∂mf ≡ f,m. For graded variables

left derivatives are denoted by ∂
∂c

f(c), while right derivatives are denoted equivalently by

two different notations

∂f(c)/∂c ≡ f

←−
∂

∂c
(A.5)
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The corresponding notations are used for functional derivatives δ
δc(σ) . With respect to the

wedge product, the basis element ∂m is an odd object (∂m ∧∂n = −∂n ∧∂m). The partial

derivative ∂k acting on some coefficient function, however, is an even operator (it does not

change the parity as long as it is not contracted with a basis element dxk). That is why

we denote the odd basis element ∂m and dxm as well as the odd exterior derivative d with

boldface symbols. The interior product itself does not carry a grading in the sense that

| ıKρ |=| K | + | ρ |, while for the Lie derivative LK = [ıK ,d] the L carries a grading

in the sense | LKρ |=| K | + | ρ | +1. That is why the Lie derivative is denoted with a

boldface L which is also very good to distinguish it from generalized multivectors K,L, . . ..

The philosophy of writing odd objects in boldface style is also extended to the combined

basis element

tM ≡ (∂m,dxm),

t
M ≡ (dxm,∂m) (A.6)

and to the comma in the derived bracket [ , ] in contrast to the commutator [ , ]. This

should be, however, just a reminder. It will be obvious for other reasons, which bracket is

meant. But we do not extend this philosophy to vectors and 1-forms, where it would be

consistent (but too much effort) to write the vectors and basis elements in boldface style

and the coefficients in standard style. We will instead write the vector in the same style as

the coefficient a = amdxm.

A square bracket is used as usual to denote the antisymmetrization of, say p, indices

(including a normalization factor 1
p!). A vertical line is used to exclude some indices from

antisymmetrization. An extreme example would be

A[ab|cd|e|fg|hi] (A.7)

where A is antisymmetrized only in a, b, e, h and i, but not in c, d, f and g. Normally we

use only expressions like A[ab|cd|efg], where a, b, e, f and g are antisymmetrized.

Wedge product. A significant difference from usual conventions is that for multivectors,
forms and generalized multivectors we include the normalization of the factor already in
the definition of the wedge product

dxm1 · · ·dxmn ≡ dxm1 ∧ . . . ∧ dxmn ≡ dx[m1 ⊗ . . . ⊗ dxmn] ≡
∑

P

1

n!
dxmP (1) ⊗ . . . ⊗ dxmP (n) (A.8)

∂m1 · · ·∂mn
≡ ∂m1 ∧ · · · ∧ ∂mn

≡ ∂ [m1
⊗ · · · ⊗ ∂mn] ≡

∑

P

1

n!
∂mP(1)

⊗ · · · ⊗ ∂mP(n)
(A.9)

tM1 . . . tMn
≡ tM1 ∧ . . . ∧ tMn

≡ t[M1
⊗ . . . ⊗ tMn] ≡

∑

P

1

n!
tMP (1)

⊗ . . . ⊗ tMP (n)
(A.10)

(where we sum over all permutations P ), such that we omit the usual factor of 1
p! in the

coordinate expression of a p-form, or a p-vector

α(p) ≡ αm1...mpdx
m1 ∧ · · · ∧ dxmp ≡ αm1...mpdx

m1 · · ·dxmp (A.11)

v(p) ≡ vm1...mp∂m1 ∧ . . . ∧ ∂mp (A.12)
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Readers who prefer the 1
p! , can easily reintroduce it in every equation by replacing e.g. the

coefficient functions vm1...mp → 1
p!v

m1...mp . The equation for the Schouten bracket (B.9),

for example, would change as follows:

[
v(p),w(q)

]m1...mp+q−1

= pv[m1...mp−1|k∂kw
|mp...mp+q−1]

−qv[m1...mp|
,kw

k |mp+1...mp+q−1]

−→
1

(p+q−1)!

[
v(p),w(q)

]m1...mp+q−1

=
1

(p − 1)!

1

q!
v[m1...mp−1|k∂kw

|mp...mp+q−1]

−
1

p!

1

(q − 1)!
v[m1...mp|

,kw
k |mp+1...mp+q−1]

Schematic index notation. For longer calculations in coordinate form it is useful to

introduce the following notation, where every boldface index is assumed to be contracted

with the corresponding basis element (at the same position of the index), s.th. the indices

are automatically antisymmetrized.

ω(p) = ωm1...mpdx
m1 · · ·dxmp ≡ ωm...m (A.13)

a(p) = an1...np∂n1 ∧ . . . ∂np ≡ an...n (A.14)

K(p) = KM1...Mpt
M1 . . . tMp ≡ KM...M (A.15)

= KM1...MptM1 . . . tMp ≡ KM...M (A.16)

or for products of tensors e.g.

ωm...mηm...m ≡ ω[m1...mp
ηmp+1...mp+q]dx

m1 · · ·dxmp+q

= ωm1...mpηmp+1...mp+qdx
m1 · · ·dxmp+q = (−)pqηm...mωm...m

A boldface index might be hard to distinguish from an ordinary one, but this notation is

nevertheless easy to recognize, as normally several coinciding indices appear (which are not

summed over as they are at the same position). Similarly, for multivector valued forms we

define17

Km...m
n...n ≡ Km1...mk

n1...nk′dxm1 ∧ . . . ∧ dxmk ⊗ ∂m1 ∧ . . . ∧ ∂mk′
(A.17)

Km...m
n...npLpm...m

n...n ≡

≡Km1...mk

n1...nk′−1pLpm1...ml−1

n1...nl′dxm1 · · ·dxmk+l−1⊗∂m1 · · ·∂mk′+l′−1

17Upper and lower signs are thus treated independently. For calculational reasons this is not the best

way to do. We can interpret every boldface index on the lefthand side of (A.17) as a basis element sitting

at the position of the index, so that the order of the basis elements on the lefthand side is first k × dxm,

(k′ − 1)∂m, (l − 1) × dxm and l′ × ∂m, s.th., in order to get the order of the righthand side, we have to

interchange (k′ − 1)∂m with (l − 1) × dxm, which gives a sign factor of (−)(k
′−1)(l−1). This is a natural

sign factor which appears all the way in the equations, which could be easily absorbed into the definition.

However, we wanted to keep the sign factors explicitly in the equations in order to keep the notation as

self-explaining as possible and not confuse the reader too much.
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B. Review of geometric brackets as derived brackets

Mathematics in this section is based on the review article on derived brackets by Kosmann-

Schwarzbach [1]. The presentation, however, will be somewhat different and in addition to

(or sometimes instead of) the abstract definitions coordinate expressions will be given.

B.1 Lie bracket of vector fields, Lie derivative and Schouten bracket

This first subsection is intended to give a feeling, why the Schouten bracket is a very natural

extension of the Lie bracket of vector fields. It is a good example to become more familiar

with the subject, before we become more general in the subsequent subsections, but it can

be skipped without any harm (note however the notation introduced before (B.12)).

Consider the ordinary Lie-bracket of vector fields which turns the tangent space of a

manifold into a Lie algebra or the tangent bundle into a Lie algebroid and which takes in

a local coordinate basis the familiar form

[v,w]m = vk∂kw
m − wk∂kv

m (B.1)

We will convince ourselves in the following that numerous other common differential brack-

ets are just natural extensions of this bracket and can be regarded as one and the same

bracket. Such a generalized bracket is e.g. useful to formulate integrability conditions and

it can serve via the Jacobi identity as a powerful tool in otherwise lengthy calculations .

In addition it shows up naturally in some sigma-models as is discussed in section 2.

Given the Lie-bracket of vector fields, it seems natural to extend it to higher rank

tensor fields by demanding a Leibniz rule on tensor products of the form [v,w1 ⊗ w2] =

[v,w1] ⊗ w2 + w1 ⊗ [v,w2]. Remembering that the Lie-bracket of two vector fields is just

the Lie derivative of one vector field with respect to the other

[v,w] = Lvw (B.2)

the Lie derivative of a general tensor T = T
n1...nq
m1...mpdx

m1 ⊗ . . .⊗dxmp ⊗∂n1 ⊗ · · · ⊗∂nqwith

respect to a vector field v can be seen as a first extension of the Lie bracket:

[v,T ] ≡ LvT (B.3)

[v,T ]n1...nq

m1...mp
= vk∂kT

n1...nq
m1...mp −

∑

i

∂kv
niT

n1...ni−1k ni+1...nq
m1...mp

+
∑

j

∂mj
vkT

n1...nq

m1...mj−1k mj+1...mp

The Lie derivative obeys (as a derivative should) the Leibniz rule

[v,T1 ⊗ T2] = [v,T1] ⊗ T2 + T1 ⊗ [v,T2] (B.4)

In fact, giving as input only the Lie derivative of a scalar φ, namely the directional derivative

[v,φ] ≡ vk∂kφ, and the Lie bracket of vector fields (B.1), the Lie derivative of general

– 40 –



J
H
E
P
0
6
(
2
0
0
7
)
0
0
4

tensors (B.3) is determined by the Leibniz-rule. Insisting on antisymmetry of the bracket,

we have to define

[T ,v] ≡ − [v,T ] (B.5)

Indeed, it can be checked that the above definitions lead to a valid Jacobi-identity of the

form

[v, [w,T ]] = [[v,w] ,T ] + [w, [v,T ]] for arbitrary tensors T (B.6)

which is perhaps better known in the form

[Lv,Lw]T = L[v,w]T (B.7)

We have now vectors acting via the bracket on general tensors, but tensors only acting

on vectors via (B.5) . It is thus natural to use Leibniz again to define the action of

tensors on tensors. To make a long story short, this is not possible for general tensors. It

is possible, however, for tensors with only upper indices which are either antisymmetrized

(multivectors) or symmetrized (symmetric multivectors). We will concentrate in this paper

on tensors with antisymmetrized indices (the reason being the natural given differential for

forms which also have antisymmetrized indices), but the symmetric case makes perfect

sense and at some points we will give short comments. (See e.g. [27] for more information

on the Schouten bracket of symmetric tensor fields.)

Given two multivector fields (note that the prefactor 1/p! is intentionally missing (see

page 38).

v(p) ≡ vm1...mp∂m1 ∧ . . . ∧ ∂mp ,

w(q) ≡ wm1...mq∂m1 ∧ . . . ∧ ∂mq (B.8)

their Schouten(-Nijenhuis) bracket, or Schouten bracket for short, is given in a local coor-

dinate basis by
[
v(p),w(q)

]m1...mp+q−1

= pv[m1...mp−1|k∂kw
|mp...mp+q−1]

−qv[m1...mp|
,kw

k |mp+1...mp+q−1] (B.9)

Realizing that the Lie-derivative (B.3) of a multivector field w(q) with respect to a vector

v(1) is [
v,w(q)

]n1...nq

= vk∂kw
n1...nq − q∂kv

[n1|wk |n2...nq ] (B.10)

one recognizes that (B.9) is a natural extension of this, obeying a Leibniz rule, which we

will write down below in (B.17). However, as the coordinate form of generalized brackets

will become very lengthy at some point, we will first introduce some notation which is

more schematic, although still exact. Namely we imagine that every boldface index m is

an ordinary index m contracted with the corresponding basis vector ∂m at the position of

the index:

v(p) = vm1...mp∂m1 ∧ . . . ∧ ∂mp ≡ vm...m (B.11)
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This saves us the writing of the basis vectors as well as the enumeration or manual an-

tisymmetrization of the indices. As a boldface index might be hard to distinguish from

an ordinary one, we will use this notation only for several indices, s.th. we get repeated

indices m . . . m which are easily to recognize (and are not summed over, as they are at the

same vertical position). See in the appendix A on page 39 for a more detailed explanation.

The Schouten bracket then reads

[
v(p),w(q)

]
= pvm...mk∂kw

m...m − qvm...m
,kw

k m...m (B.12)

= pvm...mk∂kw
m...m − (−)p(q−1)qwk m...mvm...m

,k (B.13)

= pvm...mk∂kw
m...m − (−)(p−1)(q−1)qwm...mk∂kv

m...m (B.14)

In the last line it becomes obvious that the bracket is skew-symmetric in the sense of a Lie

algebra of degree18 −1:

[
v(p),w(q)

]
= −(−)(p−1)(q−1)

[
w(q),v(p)

]
(B.15)

It obeys the corresponding Jacobi identity

[
v
(p1)
1 ,

[
v
(p2)
2 ,v

(p3)
3

]]
=

[[
v
(p1)
1 ,v

(p2)
2

]
,v

(p3)
3

]
+ (−)(p1−1)(p2−1)

[
v
(p2)
2 ,

[
v
(p1)
1 ,v

(p3)
3

]]
(B.16)

Our starting point was to extend the bracket in a way that it acts via Leibniz on the wedge

product. A Lie algebra which has a second product on which the bracket acts via Leibniz

is known as Poisson algebra. However, here the bracket has degree −1 (it reduces the

multivector degree by one) while the wedge product has no degree (the degree of the wedge

18A Lie bracket
ˆ
,(n)

˜
of degree n in a graded algebra increases the degree (which we denote by | . . . |)

by n
˛
˛
ˆ
A,(n) B

˜˛
˛ =| A | + | B | +n

It can be understood as an ordinary graded Lie-bracket, when we redefine the grading ‖ . . . ‖ ≡| . . . | +n,

such that the Lie bracket itself does not carry a grading any longer

‚
‚

ˆ
A,(n) B

˜‚
‚ = ‖A‖ + ‖B‖

The symmetry properties are thus (skew symmetry of degree n)

ˆ
A,(n) B

˜
= −(−)(|A|+n)(|A|+n) ˆ

B,(n) A
˜

and it obeys the usual graded Jacobi-identity (with shifted degrees)

ˆ
A,(n)

ˆ
B,(n) C

˜˜
=

ˆˆ
A,(n) B

˜
,(n) C

˜
+ (−)(|A|+n)(|A|+n) ˆ

B,(n)

ˆ
A,(n) C

˜˜

In addition there might be a Poisson-relation with respect to some other product which respects the original

grading. To be consistent with both gradings, this relation has to read

ˆ
A,(n) B · C

˜
=

ˆ
A,(n) B

˜
· C + (−)(|A|+n)|B|B ·

ˆ
A,(n) C

˜

This is consistent with B · C = (−)|B||C|C · B on the one hand and the skew symmetry of the bracket on

the other hand. One can imagine the grading of the bracket to sit at the position of the comma.

For the bracket of multivectors we have as degree the vector degree. Later, when we will have tensors of

mixed type (vector and form), we will use the form degree minus the vector degree as total degree. Then

the Schouten-bracket is of degree +1, which should not confuse the reader.

– 42 –



J
H
E
P
0
6
(
2
0
0
7
)
0
0
4

product of multivectors is just the sum of the degrees). According to footnote 18, we have

to adjust the Leibniz rule. The resulting algebra for Lie brackets of degree -1 is known

as Gerstenhaber algebra or in this special case Schouten algebra (which is the standard

example for a Gerstenhaber algebra). The Leibniz rule is

[
v
(p1)
1 , v

(p2)
2 ∧ v

(p3)
3

]
=

[
v
(p1)
1 , v

(p2)
2

]
∧ v

(p3)
3 + (−)(p1−1)p2v

(p2)
2 ∧

[
v
(p1)
1 , v

(p3)
3

]
(B.17)

The standard example in field theory for a Poisson algebra is the phase space equipped with

the Poisson bracket or the commutator of operators or matrices.19 The Schouten algebra

is naturally realized by the antibracket of the BV antifield formalism (see subsection 2.5).

B.2 Embedding of vectors into the space of differential operators

The Leibniz rule is not the only concept to generalize the vector Lie bracket to higher rank

tensors. The major difficulty in the definition of brackets between higher rank tensors is

the Jacobi-identity, which should hold for them. It is therefore extremely useful to have

a mechanism which automatically guarantees the Jacobi identity. A way to get such a

mechanism is to embed the tensors into some space of differential operators, as for the

operators we have the commutator as natural Lie bracket which might in turn induce some

bracket on the tensors we started with. Vector fields e.g. naturally act on differential forms

via the interior product

ıvω
(p) ≡ p · vkωkm...m (B.18)

This can be seen as the embedding of vector fields in the space of differential operators

acting on forms, because the interior product with respect to a vector is a graded derivative

with the grading -1 of the vector (we take as total degree the form degree minus the

multivector degree, which for a vector is just -1)

ıv

(
ω(p) ∧ η(q)

)
= ıvω

(p) ∧ η(q) + (−)qω(p) ∧ ıvη
(q) (B.19)

Taking the idea of above we can take the commutator of two interior products. We note,

however, that it only induces a trivial (always vanishing) bracket on the vectorfields

[ıv, ıw] = 0 = ı0 (B.20)

As the interior product (B.18) does not include any partial derivative on the vector-

coefficient, it was clear from the beginning that this ansatz does not lead to the Lie bracket

of vector fields or any generalization of it. We have to bring the exterior derivative into

the game, in our notation

dω(p) = ∂mωm...m (B.21)

There are two ways to do this

19In fact, working with totally symmetric multivector fields would have lead to a Poisson algebra instead

of a Gerstenhaber algebra.
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• Change the embedding: Instead of embedding the vectors via the interior product

acting on forms, we can embed them via the Lie-derivative acting on forms. When

acting on forms, the Lie derivative can be written as the (graded) commutator of

interior product and exterior derivative

Lv = [ıv ,d] Lvω
(p) = vk∂kωm...m + p · ∂mvkωk m...m (B.22)

Indeed, using the Lie derivative as embedding v 7→ Lv, the commutator of Lie deriva-

tives induces the Lie bracket of vector fields (a special case of (B.7)

[Lv,Lw] = L[v,w] (B.23)

• Change the bracket: In the space of differential operators acting on forms, the com-

mutator is the most natural Lie bracket. However, the existence of a nilpotent odd

operator acting on our algebra, namely the commutator with the exterior derivative,

enables the construction of what is called a derived bracket.20

[ıv,dıw] ≡ [[ıv,d] , ıw] (B.24)

This derived bracket (which is in this case a Lie bracket again, as we are considering

the abelian subalgebra of interior products of vector fields) indeed induces the Lie

bracket of vector fields when we use the interior product as embedding

[ıv,dıw] = ı[v,w] (B.25)

20Given a bracket
ˆ
,(n)

˜
of degree n (not necessarily a Lie bracket. It can be as well a Loday bracket

where the skew-symmetry property as compared to footnote 18 is missing, but the Jacobi identity still

holds) and a differential D (derivation of degree 1 and square 0), its derived bracket [28, 29, 1] (which is of

degree n + 1) is defined by
ˆ
a,(D) b

˜
= (−)n+a+1 ˆ

Da,(n) b
˜

We put the subscript (D) at the position of the comma, to indicate that the grading of D is sitting there.

The strange sign is just to make the definition nicer for the most frequent case of an interior derivation,

where Da =
ˆ
d,(n) a

˜
with d some element of the algebra with degree | d |= 1−n and

ˆ
d,(n) d

˜
= 0, s.th. we

have

[a,d b] =
ˆˆ

a,(n) d
˜
,(n) b

˜

The derived bracket is then again a Loday bracket (of degree n + 1) and obeys the corresponding Jacobi-

identity (that is always the nontrivial part). If a, b are elements of a commuting subalgebra ([a,(n) b] = 0),

the derived bracket even is skew-symmetric and thus a Lie bracket of degree n + 1.

In the case at hand we start with a Lie bracket of degree 0 (the commutator) and take as interior derivation

the commutator with the exterior derivative [d, . . .]. Note that the exterior derivative itself is a derivative

on forms, but not on the space of differential operators on forms. Therefore we need the commutator.
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The above equations plus two additional ones are the well known Cartan formulae

[ıv , ıw] = 0 = [d,d] (B.26)

Lv = [ıv,d] (B.27)

[Lv,d] = 0 (B.28)

[Lv,Lw] = L[v,w] (B.29)

[
[ıv,d]︸ ︷︷ ︸

Lv

, ıw
]
] = ı[v,w] (B.30)

(B.23) can be rewritten, using Jacobi’s identity and [d,d] = 0, as

[[[ıv,d] , ıw] ,d] =
[
ı[v,w],d

]
(B.31)

Starting from (B.25), one thus arrives at (B.23) by simply taking the commutator with d.

We will therefore concentrate in the following on the second possibility, using the derived

bracket, as the first one can be deduced from it. Let us just mention that the generalization

in the spirit of the derived bracket (B.25) (or more precise its skew-symmetrization) is

known as Vinogradov bracket [30, 31] (see footnote 25), while the generalization in the

spirit of (B.23) is known as Buttin’s bracket [23].

B.3 Derived bracket for multivector valued forms

Let us now consider a much more general case, namely the space of multivector valued

forms, i.e. tensors which are antisymmetric in the upper as well as in the lower indices.

With the Schouten bracket we have a bracket for multivectors, which are antisymmetric in

all (upper) indices. There exists as well a bracket for vector valued forms, namely tensors

with one upper index and arbitrary many antisymmetrized lower indices. This bracket

(which we have not yet discussed) is the (Fröhlicher-) Nijenhuis bracket (see (B.64)), which

shows up in the integrability condition for almost complex structures. Multivector valued

forms have arbitrary many antisymmetrized upper and arbitrary antisymmetrized lower

indices and thus contain both cases. The antisymmetrization appears quite naturally in

field theory (we give only a few remarks about completely symmetric indices, which appear

as well, but which will not be subject of this paper). It makes also sense to define brackets

on sums of tensors of different type (e.g. the Dorfman bracket for generalized complex

geometry). Those brackets are then simply given by linearity.

So let us consider two vector valued forms (we denote the number of lower indices and
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the number of upper indices in this order via superscripts)21

K(k,k′) ≡ Km...m
n...n

≡ Km1...mk

n1...nk′dxm1 · · ·dxmk ⊗ ∂n1 · · ·∂nk′
(B.32)

L(l,l′) ≡ Lm...m︸ ︷︷ ︸
l

n...n

︸︷︷︸
l′

(B.33)

Note the use of the schematic index notation, which we used for upper indices already in

subsection B.1 and which is explained in the appendix A on page 39. Following the ideas of

above, we want to embed those vector valued forms in some space of differential operators.

As we have upper as well as lower indices now, it is less clear why we should choose the space

of operators acting on forms and not on some other tensors for the embedding. However,

the space of forms is the only one where we have a natural exterior derivative without

using any extra structure.22 Therefore we will define again a natural embedding into the

space of differential operators acting on forms as a generalization of the interior product.

Namely, we will act with a multivector valued form K on a form ρ by just contracting all

upper indices with form-indices and antisymmetrizing the remaining lower indices s.th. we

get again a form as result. The formal definition goes in two steps. First one defines the

interior product with multivectors. For a decomposable multivector v(p) = v1 ∧ . . .∧ vp set

ıv1∧...∧vpρ
(r) ≡ ıv1 · · · ıvpρ

(r) (B.34)

This fixes the interior product for a generic multivector uniquely (contracting all indices

with form-indices). The next step is to define for a multivector valued form K(k,k′) =

η(k) ∧ v(k′) which is decomposable in a form and a multivector, that it acts on a form by

first acting with the multivector as above and then wedging the result with the form

ıη(k)∧v(k′)ρ ≡ η(k) ∧ ıv(k)ρ = (−)k
′kıv(k′)∧η(k)ρ (B.35)

It is kind of a normal ordering that ıv(k′) acts first:

ıηıv = ıη(k)∧v(k′) = (−)kk′
ıv(k′)∧η(k) 6= ıvıη (B.36)

For a generic multivector valued form, the above definitions fix the following coordinate

form of the interior product23 with a multivector valued form

ıK(k,k′)ρ
(r) ≡ (k′)!

(
r

k′

)
Km...m

l1...lk′ρlk′ ...l1m...m︸ ︷︷ ︸
r

(B.37)

21One can certainly map a tensor Km
n
dxm ⊗ ∂n to one where the basis elements are antisymmetrized

Km
n
dxm ∧∂n

see page 38
≡ 1

2
Km

n
dxm ⊗ ∂n − 1

2
Km

n∂n ⊗dxm and vice versa. In the field theory applications

we will always get a complete antisymmetrization. This mapping is the reason why we take care for the

horizontal positions of the indices. It should just indicate the order of the basis elements which was chosen

for the mapping.
22One can define an exterior derivative — the Lichnerowicz-Poisson differential — on the space of

multivectors as well (via the Schouten bracket), but for this we need an integrable Poisson structure:

dP N (q) ≡
h

P (2),N (q)
i

, with
h

P (2),P (2)
i

= 0
23The name ’interior product’ is misleading in the sense that the operation is (for decomposable tensors)

a composition of interior and exterior wedge product. It will, however, in the generalizations of Cartan’s
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So we are just contracting all the upper indices of K with an appropriate number of indices

of the form and are wedging the remaining lower indices. The origin of the combinatorial

prefactor is perhaps more transparent in the phase space formulation (2.13) in subsec-

tion 2.1. For multivectors v(p) and w(q) the operator product of ıv(p) and ıw(q) induces, due

to (B.34) simply the wedge product of the multivectors

ıv(p) ıw(q) = ıv(p)∧w(q) (B.38)

But for general multivector-valued forms we have instead24

ıK(k,k′)ıL(l,l′) =

k′∑

p=0

ı
ı
(p)
K L

= ıK∧L +

k′∑

p=1

ı
ı
(p)
K L

(B.39)

with

ı
(p)

K(k,k′)
L(l,l′) ≡ (−)(k

′−p)(l−p)p!

(
k′

p

)(
l

p

)
Km...m

n...nl1...lpLlp...l1m...m
n...n (B.40)

For p = k′, ı
(p)
K reduces to the interior product (B.37). Both are in general not a derivative

any longer. ı(p) is, however, a p-th order derivative, as contracting p indices means taking

the p-th derivative with respect to p basis elements (see 2.18 in subsection 2.1). Our

embedding ıK(k,k′) in (B.37) is therefore a k′-th order derivative. For p = 0 on the other

hand, ı
(p)
K is just a wedge product with K

While for vectors the commutator of two interior products (B.20) did only induce a

trivial bracket on vectors, which is the same for multivectors due to (B.38), this is different

formulae play the role of the interior product. We will therefore stick to this name. We can also see it as

a short name for ’interior product of maximal order’ in the sense that all upper indices are contracted as

opposed to an interior ’product of order p’, where we contract only p upper indices. ’Order’ is in the sense

of the order of a derivative. While ıv is a derivative for any vector v, the general interior product acts like

a higher order derivative.
24The product of interior products in (B.39) induces a noncommutative product for the multivector-valued

forms, whose commutator is the algebraic bracket, namely

K ∗ L ≡
X

p≥0

ı
(p)
K L

[K, L]∆ = K ∗ L − (−)(k−k′)(l−l′)L ∗ K

– 47 –



J
H
E
P
0
6
(
2
0
0
7
)
0
0
4

for multivector-valued forms.

[
ıK(k,k′) , ıL(l,,l′)

]
= ı[K,L]∆ (B.41)

[K,L]∆ ≡
∑

p≥1

ı
(p)
K L − (−)(k−k′)(l−l′)ı

(p)
L K︸ ︷︷ ︸

≡[K,L]∆
(p)

(B.42)

=
∑

p≥1

(−)(k
′−p)(l−p)p!

(
k′

p

)(
l

p

)
Km...m

n...nl1...lpLlp...l1m...m
n...n

−(−)(k−k′)(l−l′)(−)(l
′−p)(k−p)p!

(
l′

p

)(
k

p

)
× (B.43)

×Lm...m
n...nl1...lpKlp...l1m...m

n...n

where we introduced an algebraic bracket [K,L]∆ in the second line, which is is due to

Buttin [23], and which is a generalization of the Nijenhuis-Richardson bracket for vector-

valued forms (B.60). As it was induced via the embedding from the graded commutator,

it has the same properties, i.e. it is graded antisymmetric and obeys the graded Jacobi

identity. Actually, the term with lowest p, so [K,L]∆(p=1), is itself an algebraic bracket,

which appears in subsection 2.1.1 as canonical Poisson bracket. It is known under the

name Buttin’s algebraic bracket ([23], denoted in [1] by [ , ]0B) or as big bracket

[K,L]∆(1) = ı
(1)
K L − (−)(k−k′)(l−l′)ı

(1)
L K = (−)(k

′−1)(l−1)k′l · Km...m
n...nl1Ll1m...m

n...n

−(−)(k−k′)(l−l′)(−)(l
′−1)(k−1)l′k · Lm...m

n...nl1Kl1m...m
n...n (B.44)

But as for the vector fields in subsection B.2, we are rather interested in the derived bracket

of [K,L]∆, or at the bracket induced via an embedding based on the Lie derivative. An

obvious generalization of the Lie derivative is the commutator [ıK ,d], which will be a

derivative of the same order as ıK and therefore is not a derivative in the sense that it

obeys the Leibniz rule. Although it is common to use this generalization, I am not aware

of an appropriate name for it. Let us just call it the Lie derivative with respect to K (being

a derivative of order k′)

LK(k,k′) ≡
[
ıK(k,k′) ,d

]
(B.45)

LK(k,k′)ρ = (k′)!

(
r + 1

k′

)
Km...m

l1...lk′∂[lk′
ρlk′−1...l1m...m] +

−(−)k−k′
(k′)!

(
r

k′

)
∂m

(
Km...m

l1...lk′ρlk′ ...l1m...m

)
(B.46)

= (k′)!

(
r

k′ − 1

)
Km...m

l1...lk′∂lk′
ρlk′−1...l1m...m +

−(−)k−k′
(k′)!

(
r

k′

)
∂mKm...m

l1...lk′ρlk′ ...l1m...m (B.47)
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The Lie derivative above is an ingredient to calculate the derived bracket (remember foot-

note 20 on page 44) which is given by25

[ıK ,dıL] ≡ [[ıK ,d] , ıL] ≡ ı[K,L] if possible (B.48)

One should distinguish the derived bracket on the level of operators on the left from the

derived bracket on the tensors [K,L] on the right. Only in special cases the result of the

commutator on the left can be written as the interior product of another tensorial object

which then can be considered as the derived bracket with respect to the algebraic bracket

[ , ]∆. Therefore one normally does not find an explicit general expression for this derived

bracket in literature. In 2.1.2, however, the meaning of exterior derivative and interior

product are extended in order to be able to write down an explicit general coordinate

expression (2.48) which reduces in the mentioned special cases to the well known results

(see e.g. B.4.2).

Closely related to the derived bracket in (B.48) of above is Buttin’s differential bracket,

given by

[LK ,LL] ≡ L[K,L]B
if possible (B.49)

Because of [d,d] = 0 and LK = [ıK ,d] we have (using Jacobi)

[LK ,LL] = [[ıK ,dıL] , d] = [[ıK ,dıL] , d]
!
= [ı[K,L]B

, d] (B.50)

Comparing with (B.48) s.th. in cases where [K,L] exists, the brackets have to coincide up

to a closed term, or locally a total derivative

ı[K,L] = ı[K,L]B
+ [d, . . .] (B.51)

Using again the extended definition of exterior derivative and interior product of 2.1.2, this

relation can be rewritten as

[K,L] = [K,L]B + d(. . .) (B.52)

The Nijenhuis bracket (B.71) is the major example for this relation.

B.4 Examples

B.4.1 Schouten(-Nijenhuis) bracket

Let us shortly review the Schouten bracket under the new aspects. For multivectors

v(p), w(q) the algebraic bracket vanishes

[ıv(p) , ıw(q) ] = 0 (B.53)

25 The Vinogradov bracket [31, 30] (see also [1]) is a bracket in the space of all graded endomorphisms in

the space of differential forms Ω•(M)

[a,b]V =
1

2

“

[[a, d] , b] − (−)b [a, [b, d]]
”

∀a, b ∈ Ω•(M)

It is the skew symmetrization of a derived bracket. The embedding of the multivector valued forms into the

endomorphisms Ω•(M) via the interior product which we consider is neither closed under the Vinogradov

bracket nor under the derived bracket in the general case.
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The Schouten bracket
[
v(p),w(q)

]
coincides with the derived bracket as well as with Buttin’s

differential bracket, i.e. we have

[[ıv(p) ,d] , ıw(q) ] = ı[v(p),w(q)] (B.54)

[Lv(p) ,Lw(q) ] = L[v(p),w(q)] (B.55)

Its coordinate form — given already before in (B.14) – is
[
v(p),w(q)

]
= pvm...mk∂kw

m...m − (−)(p−1)(q−1)qwm...mk∂kv
m...m (B.56)

The vector Lie bracket is a special case of the Schouten bracket as well as of the

Nijenhuis bracket.

B.4.2 (Fröhlicher-)Nijenhuis bracket and its relation to the Richardson-

Nijenhuis bracket

Consider vector valued forms, i.e. tensors of the form

K(k,1) ≡ Km1...mk

ndxm1 ∧ · · · ∧ dxmk ∧ ∂n
∼= Km1...mk

ndxm1 ∧ · · · ∧ dxmk ⊗ ∂n(B.57)

The algebraic bracket of two such tensors, defined via the graded commutator (note that

| ıK |=| K |= k − 1)

[ıK , ıL] = ı[K,L]∆ (B.58)

consists only of the first term in the expansion, because we have only one upper index to

contract.
[
K(k,1), L(l,1)

]∆
=

[
K(k,1), L(l,1)

]∆

(1)
= ı

(1)
K L − (−)(k−1)(l−1)ı

(1)
L K = (B.59)

=
(B.44)

= l Km...m
jLjm...m

n − (−)(k−1)(l−1)k Lm...m
jKjm...m

n (B.60)

It is thus just the big bracket or Buttin’s algebraic bracket but in this case it is known as

Richardson-Nijenhuis-bracket.

The Lie derivative of a form with respect to K (in the sense of (B.45)) is because of

k′ = 1 really a (first order) derivative and takes the form

LK(k,1) ≡ [ıK(k,1) ,d] (B.61)

LK(k,1)ρ(r) = Km...m
l∂lρm...m + (−)kr∂mKm...m

lρlm...m (B.62)

The (Froehlicher-)Nijenhuis bracket is defined as the unique tensor [K,L]N , s.th.

[LK ,LL] = L[K,L]N (B.63)

It is therefore an example of Buttin’s differential bracket. Its explicit coordinate form reads

[K,L]N ≡ Km...m
j∂jLm...m

n + (−)kl∂mKm...m
jLjm...m

n +

−(−)klLm...m
j∂jKm...m

n − (−)kl(−)lk∂mLm...m
jKjm...m

n (B.64)

= ”LKL − (−)kl
LLK” (B.65)
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A different point of view on the Nijenhuis bracket is via the derived bracket on the

level of the differential operators acting on forms:

[ıK ,d ıL] ≡ [[ıK ,d] , ıL] (B.66)

It induces the Nijenhuis-bracket only up to a total derivative (the Lie-derivative-term)

[ıK ,d ıL] ≡ ı[K,L]N
− (−)k(l−1)

LıLK (B.67)

Using the extended definition of the exterior derivative in the sense of (2.35) and of the

interior product (2.31), one can write the Lie derivative as an interior product (see 2.33)

LıLK = −(−)l+kıd(ıLK) and [[ıK ,d] , ıL] = (−)k [ıdK , ıL] = (−)kı[dK,L]∆ , so that we can

rewrite (B.67) as

[K,L] ≡ [K,L]N + (−)(k−1)ld(ıLK) (B.68)

with [K,L] ≡ (−)k [dK,L]∆ (B.69)

In that sense, [K,L] is the derived bracket of the Richardson Nijenhuis bracket while the

Nijenhuis bracket differs by a total derivative. The explicit coordinate form can be read

off from (2.46), (2.48) (with only the p = 1 term surviving)

[K,L] = (−)kı
(1)
dKL + (−)kl(−)lı

(1)
dL K + (−)(k−1)ld(ı

(p)
L K) = (B.70)

= Km...m
j∂jLm...m

n + (−)kl∂mKm...m
jLjm...m

n +

−(−)klLm...m
j∂jKm...m

n − (−)kl(−)lk∂mLm...m
jKjm...m

n +

+(−)(k−1)ld
(
kLm...m

jKjm...m
n

︸ ︷︷ ︸
ıLK

)
(B.71)

where the last part is non-tensorial due to the appearance of the basis element pi (see
subsection 2.1.2):

d(ıLK) = d
(
kLm...m

jKjm...m
n
)

= k∂m

(
Lm...m

jKjm...m
n
)
− (−)l+kLm...m

jKjm...m
ipi (B.72)

The remaining part coincides with the coordinate form of the Nijenhuis bracket as given

in (B.64).

One can nicely summarize the algebra of graded derivations on forms as

[
L

K
(k1)
1

+ ı
L

(l1)
1

, L
K

(k2)
2

+ ı
L

(l2)
2

]
=

= L[K1,K2]N+ıL1
K2−(−)(l2−1)k1 ıL2

K1
+ ı[K1,L2]N−(−)(l1−1)k2 [K2,L1]N+[L1,L2]∆ (B.73)

C. Some aspects of generalized (complex) geometry

For introductions into Hitchin’s [5] generalized complex geometry (GCG) see e.g. Zabzine’s

review [16] or Gualtieri’s thesis [3]. For a survey of compactification with fluxes and its

relation to GCG see Graña’s review [9].

– 51 –



J
H
E
P
0
6
(
2
0
0
7
)
0
0
4

C.1 Basics

In generalized geometry one is looking at structures (e.g. a complex structure) on the

direct sum of tangent and cotangent bundle T ⊕ T ∗. Let us call a section of this bundle a

generalized vector (field) or synonymously generalized 1-form, which is the sum of a vector

field and a 1-form

a = a + α (C.1)

= am∂m + αmdxm (C.2)

Using the combined basis elements

tM ≡ (∂m,dxm) (C.3)

a generalized vector a can be written as

a = a
M

tM (C.4)

a
M = (am, αm) (C.5)

There is a canonical metric G on T ⊕ T ∗

〈a, b〉 ≡ α(b) + β(a) (C.6)

= αmbm + βmam (C.7)

≡ a
MGMNb

N (C.8)

with

GMN ≡

(
0 δn

m

δm
n 0

)
(C.9)

which has signature (d,-d) (if d is the dimension of the base manifold). The above definition

differs by a factor of 2 from the most common one. We prefer, however, to have an inverse

metric of the same form

GMN ≡
(
G−1

)MN
=

(
0 δm

n

δn
m 0

)
(C.10)

As it is constant, we can always pull it through partial derivatives. Using this metric

to lower and raise indices just interchanges vector and form component. We can equally

rewrite a in (C.4) with a basis with upper capital indices and the vector coefficients with

lower indices

t
M ≡ (dxm,∂m) (C.11)

a = aM t
M (C.12)

aM = (αm, am) (C.13)

Note that in the present paper there is no existence of any metric on the tangent bundle

assumed. Therefore we cannot raise or lower small indices. In cases where 1-form and
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vector have a similar symbol, the position of the small index therefore uniquely determines

which is which (e.g. ωm and wm).

In addition to the canonical metric GMN there is also a canonical antisymmetric 2-form

B, s.th. α(b) − β(a) = a
MBMNb

N with coordinate form

BMN ≡

(
0 −δn

m

δm
n 0

)
(C.14)

Raising the indices with GMN yields

BM
N =

(
δm
n 0

0 −δn
m

)
= −BN

M (C.15)

BMN =

(
0 δm

n

−δn
m 0

)
(C.16)

We can thus use B and G to construct projection operators PT and PT∗ to tangent and

cotangent space

PT
M

N ≡
1

2

(
δM

N + BM
N

)
=

(
δm
n 0

0 0

)
(C.17)

PT ∗
M

N ≡
1

2

(
δM

N − BM
N

)
=

(
0 0

0 δn
m

)
(C.18)

PT a = a,

PT ∗a = α (C.19)

C.2 Generalized almost complex structure

A generalized almost complex structure is a linear map from T ⊕T ∗ to itself which squares

to minus the identity-map, i.e. in components

J M
KJK

N = −δM
N (C.20)

It is called a generalized complex structure if it is integrable (see subsection C.4). It

should be compatible with our canonical metric G which means that it should behave like

multiplication with i in a Hermitian scalar product of a complex vector space26

〈v,Jw〉 = −〈J v,w〉 ⇐⇒ (GJ )T = −GJ ⇐⇒ JMN = −JNM (C.21)

This property is also known as antihermiticity of J . Because of (C.21), J can be written

as

J M
N =

(
Jm

n Pmn

−Qmn −Jn
m

)
JMN =

(
−Qmn −Jn

m

Jm
n Pmn

)
(C.22)

26 In a complex vector space with Hermitian scalar product 〈a, b〉 = 〈b, a〉 we have 〈a, ib〉 = −〈ia, b〉.
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where Pmn and Qmn are antisymmetric matrices, and (C.20) translates into

J2 − PQ = −11 (C.23)

JP − PJT = 0 (C.24)

−QJ + JT Q = 0 (C.25)

Here it becomes obvious that the generalized complex structure contains the case of an

ordinary almost complex structure J with J2 = −1 for Q = P = 0 as well as the case of an

almost symplectic structure of a non-degenerate 2-form Q with existing inverse PQ = 11

for J = 0. In addition to those algebraic constraints, the integrability of the generalized

almost complex structure gives further differential conditions (see subsection C.4) which

boil down in the two special cases to the integrability of the ordinary complex structure or

to the integrability of the symplectic structure.

Because of J 2 = −11, J has eigenvalues ±i. The corresponding eigenvectors span

the space of generalized holomorphic vectors L or generalized antiholomorphic vectors L̄

respectively. This provides a natural splitting of the complexified bundle

(T ⊕ T ∗) ⊗ C = L ⊕ L̄ (C.26)

The projector Π to the space of eigenvalue +i (namely L) can be be written as

Π ≡
1

2
(11 − iJ ) (C.27)

while the projector to L̄ is just the complex conjugate Π̄ = 1
2 (11 + iJ ) = G−1ΠT G. Indeed,

for any generalized vector field v we have

JΠv = iΠv (C.28)

L and L̄ are what one calls maximally isotropic subspaces, i.e. spaces which are isotropic

〈v,w〉 = 0 ∀v,w ∈ L (C.29)

(this is because ΠT GΠ = GΠ̄Π = 0) and which have half the dimension of the complete

bundle. As the canonical metric 〈· · · 〉 is nondegenerate, this is the maximal possible di-

mension for isotropic subbundles.

C.3 Dorfman and Courant bracket

Something which seems to be a bit unnatural in this whole business in the beginning is

the introduction of the Courant bracket, which is the antisymmetrization of the so-called

Dorfman-bracket. The Dorfman bracket in turn is the natural generalization of the Lie
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bracket from the point of view of derived brackets (B.48)27

[[ıa,d] , ıb] = ı[a,b] (C.30)

where [a,b] ≡ [a,b] + Laβ − Lbα + d(ıbα) (C.31)

= [a,b] + Laβ − ıb(dα) (C.32)

= Lab − ıb(dα) (C.33)

To get a homogeneous coordinate expression, we define

∂M ≡ (∂m, 0) ⇒ ∂M = (0, ∂m) (C.34)

The Dorfman bracket can then be written as28

[a,b]M = a
K∂Kb

M +
(
∂M

aK − ∂Ka
M

)
b

K (C.35)

or [a,b]M = a
K∂KbM + 2∂[MaK]b

K (C.36)

Apart from the term in the middle ∂M
aK , (C.35) looks formally the same as the Lie bracket

of vector fields (B.1). The Dorfman bracket is in general not antisymmetric but it obeys a

27 The twisted Dorfman bracket is defined similarly via

[[ıa ,d+ H∧ ] , ıb ] ≡ ı[a,b]H

Remembering that H∧ = ıH and using [ıa, ıH ] = ı[a,H]∆ = ı
ı
(1)
a H

, we get

[a,b]H ≡ [a,b] − ıbıaH

28It is perhaps interesting to note that this notation of the partial derivative with capital index suggests

the extension to a derivative with respect to some dual coordinate

∂m ≡ ∂x̃m

We could understand this as coordinates of a dual manifold whose tangent space coincides in some sense

with the cotangent space of the original space and vice versa. This might be connected to Hull’s doubled

geometry [32 – 35].

To see that such an ad-hoc extension of the Dorfman bracket is not completely unfounded, note that

there is a more general notion of a Dorfman bracket (or Courant bracket) in the context of Lie-bialgebroids

(for a definition see e.g. [3, p.32,20]). There we have two Lie algebroids L and L∗ which are dual with

respect to some inner product and which both carry some Lie bracket. (For T and T ∗, only T carries a Lie

bracket in the beginning. For a non-trivial Lie bracket of forms on T ∗ we need some extra structure like

e.g. a Poisson structure which would lead to the Koszul bracket on forms.) The Lie bracket on L induces a

differential don L∗ and the Lie bracket on L∗ induces a differential d∗ on L. The definition for the Dorfman

bracket on the Lie bialgebroid L ⊕ L∗ is then

[a,b] ≡ [a,b] + Laβ − Lbα + d(ıbα) +

+ [α,β] + Lαb − Lβa + d
∗(ıβa)

The first line is the part we are used to from our usual Dorfman bracket on T ⊕T ∗, while second line is the

corresponding part coming from the nontrivial structure on L∗. Taking now L = T , L∗ = T ∗ and assuming

that [α,β] and Lα and d
∗ are a Lie bracket, Lie derivative and exterior derivative built in the ordinary way,

but with the new partial derivative w.r.t. the dual coordinates ∂m, the coordinate form of the Dorfman

bracket remains exactly the one of (C.35), (C.36), but with ∂M = (∂m, 0) replaced by ∂M = (∂m, ∂m).
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Jacobi-identity (Leibniz from the left) of the form

[a, [b,c]] = [[a,b] ,c] + [b, [a,c]] (C.37)

Although the Dorfman bracket is all we need, most of the literature on generalized complex

geometry so far works with its antisymmetrization, which is called Courant bracket

[a,b]− ≡ [a,b] + Laβ − Lbα +
1

2
d(ıbα − ıaβ) (C.38)

[a,b]−M = a
K∂KbM − ∂KaMb

K +
1

2

(
∂MaKb

K − a
K∂MbK

)
(C.39)

and which does not obey any Jacobi identity. As it is much simpler to go from Dorfman to

Courant, than the other way round, we will only work with the Dorfman bracket. On any

isotropic subspace (ıbα+ ıaβ = 0) the two coincide anyway, i.e. they become a Lie bracket,

obeying Jacobi and being antisymmetric.

We call a transformation a symmetry of the bracket when the bracket of two vectors

transforms in the same way as the vectors

[(b + δb),(c + δc)] = [b,c] + δ [b,c] (C.40)

δ [b,c] = [δb,c] + [b,δc] + [δb,δc] (C.41)

i.e. infinitesimal symmetry transformations (where the last term drops) have to obey a

product rule. Similar as for the Lie-bracket of vector fields, infinitesimal transformations

are generated by the bracket itself. Let us call the corresponding derivative, in analogy

to the Lie derivative, the Dorfman derivative of a generalized vector with respect to a

generalized vector.

δb = Dab ≡ [a, b] (C.42)

These transformations are therefore, due to the Jacobi-identity (C.37) always symmetries

of the bracket. From (C.33) we can see that the Dorfman derivative consists of a usual Lie

derivative and second part which acts only on the vector part of b by contracting it with

the exact 2-form dα

Dab = Lab (C.43)

Dαb = −ıb(dα) = bm(∂nαm − ∂mαn)dxn (C.44)

In fact, it is enough for the 2-form to be closed, in order to get a symmetry. If we replace

−dα by a closed 2-form B, the transformation is known as B-transform

δBb = ıbB (C.45)

Finally, we should note that the B-transform is part of the O(d, d)-transformations,

i.e. the transformations which leave the canonical metric invariant. As usual for orthogonal

groups the infinitesimal generators are antisymmetric when the second index is pulled down
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with the corresponding metric. The generators of an O(d, d)-transformation can therefore

be written as [3, p.6]

ΩMN =

(
Bmn −Am

n

An
m β

mn

)
(C.46)

ΩM
N =

(
An

m β
mn

Bmn −Am
n

)
(C.47)

In addition to the B-transform, acting with Ω on a generalized vector induces the so-

called beta-transform on the 1-form component29 as well as Gl(d)-transformations of vector

and 1-form component via A. For constant tensors, the Lie-derivative is just a Gl(d)

transformation. Therefore both symmetries of the Dorfman bracket are symmetries of

the canonical metric G as well. For this reason the canonical metric is invariant under

the Dorfman derivative Dvwith respect to a generalized vector v, which we define on

generalized rank p tensors using (C.35) in a way that it acts via Leibniz on tensor products

(like the Lie derivative) and as a directional derivative on scalars

(DvT )M1...Mp ≡ v
K∂KT M1...Mp +

∑

i

(∂MivK − ∂Kv
Mi)TM1...Mi−1KMi+1...Mp (C.48)

Dv(A⊗ B) = DvA⊗ B + A⊗ DvB (C.49)

Dv(φ) = v
K∂Kφ = vk∂kφ (C.50)

Acting on the canonical metric, one recovers the fact, that the Dorfman derivative contains

the isometries of the metric

DvG = 2(∂M1vK − ∂Kv
M1)GKM2 = 0 (C.51)

Comparing the role of Lie-derivative and Dorfman-derivative, the B-transform should be

understood as an extension of diffeomorphisms. In string theory it shows up in the Buscher-

rules for T-duality ([36, 37]) and can perhaps be better understood geometrically via Hull’s

doubled geometry [32 – 34] (compare to footnote 28). The beta-transform is not a symmetry

of the Dorfman bracket as it stands. However, if we introduce dual coordinates as suggested

in footnote 28, the beta-transform would show up in the symmetry-transformations of the

extended Dorfman bracket generated by itself.30

29The letter β for the beta-transformations does not really fit into the philosophy of the present notations,

where we use small Greek letters for 1-forms (or sometimes p-forms) only, but not for multivectors. As

the transformation is, however, commonly known as beta-transformation, we use a large β, in order to

distinguish it from the one-forms β, which are floating around.
30Taking the Dorfman bracket of footnote 28, we get as Dorfman derivative of a generalized vector c

instead of (C.43), (C.44) the extended transformation

Dac ≡ Lac − ıγ(d∗a)

Dαc ≡ −(ıcdα) + Lαc

i.e. the first line is extended by a beta-transformation of γ with β = −d
∗a and the B-transform of α

(B = −dα) in the second line is extended by a Lie derivative with respect to α.
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On an isotropic subspace L (e.g. the generalized holomorphic subspace) Courant- and

Dorfman-bracket coincide and have the properties of a Lie bracket. It is therefore possible

to define a Schouten bracket on generalized multivectors on
∧• L which have e.g. only

generalized holomorphic indices (compare [3, p.21]). If we use again the notation with

repeated boldface indices

A(p) ≡ AM...M ≡ AM1...Mpt
M1 · · · tM2 (C.52)

we get as coordinate form for this Dorfman-Schouten bracket

[
A(p),B(q)

]
= pAM...MK∂KBM...M + q

(
p∂MAK

M...M − ∂KAM...M
)
BKM...M (C.53)

In the first term in the bracket on the righthand side, the ∂M can as well be shifted with

a minus sign to B, because in
∧• L we have only isotropic indices in the sense that

AM...M
KBKM...M = 0 (C.54)

For this reason, the Dorfman-Schouten bracket has really the required skew-symmetry of

a Schouten-bracket

[
A(p),B(q)

]
= −(−)(q+1)(p+1)

[
B(q),A(p)

]
(C.55)

On
∧• L this bracket coincides with the derived bracket of the big bracket, as the extra

term with pM in (C.69) vanishes because of (C.54).

C.4 Integrability

Integrability for an ordinary complex structure means that there exist in any chart dimM /2

holomorphic vector fields (with respect to the almost complex structure) which can be

integrated to holomorphic coordinates za in this chart of the manifold and make it a

complex manifold. Those vector fields are then just ∂/∂za. Those coordinate differentials

have vanishing Lie bracket among each other (partial derivatives commute). In turn, every

set of vectors with vanishing Lie bracket can be integrated to coordinates. The existence

of such a set of integrable holomorphic vector fields is guaranteed when the holomorphic

subbundle is closed under the Lie bracket, i.e. the Lie bracket of two holomorphic vector

fields is again a holomorphic vector field.

As the Dorfman bracket restricted to the generalized holomorphic subbundle L ⊂

(T ⊕ T ∗) ⊗ C has the properties of a Lie bracket, we can demand exactly the same for

generalized holomorphic vectors as above for holomorphic ones. The condition for the

generalized complex structure to be integrable is thus that the generalized holomorphic

subbundle L is closed under the Dorfman bracket, i.e. in terms of the projectors

Π̄ [Πv,Πw] = 0 (C.56)

⇐⇒ [v,w] − [J v,Jw] + J [J v,w] + J [v,Jw] = 0 (C.57)
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In the following two sub-subsections we will show that this is equivalent to the vanishing

of a generalized Nijenhuis-tensor [3, p.25] of the coordinate form31,32

1

4
NM1M2M3 ≡ J [M1|K∂KJ |M2M3] + J [M1|KJK

|M2,M3] !
= 0 (C.58)

Recalling that

JMN =

(
Pmn Jm

n

−Jn
m −Qmn

)
,

JM
N =

(
−Jn

m −Qmn

Pmn Jm
n

)
,

∂M = (0, ∂m) (C.59)

we can rewrite this condition in ordinary tensor components, just to compare it with the

conditions given in literature (for the antisymmetrization of the capital indices we take

into account that in the last term of (C.58) the indices M1 and M2 are automatically

31This looks formally like the generalized Schouten bracket (e.g. [3, p.21]) on
V• L (with L being the

generalized holomorphic bundle) of J with itself (see also the statement below (C.69)), but it is not, as J

has neither holomorphic nor antiholomorphic indices

ΠJ = iΠ 6= J

Π̄J = −iΠ 6= J

In fact, we get zero if we contract both indices with the holomorphic projector

ΠN
LΠM

KJ KL = ΠJΠT = iΠΠ̄ = 0

The same happens for two antiholomorphic projectors. But we can project one index with an holomorphic

projector and the other one with an antiholomorphic one. This yields

Π̄N
LΠM

KJ KL = ΠJΠ = iΠ

Up to a constant prefactor the bracket of Π with Π coincides with the bracket of J with J . And like for

the ordinary complex structure, where we have the Nijenhuis bracket of the complex structure with itself,

which has one index in T and the second in T ∗, we could here take Π with one index in L and the other in

L̄ and regard the bracket as generalized Nijenhuis bracket of Π with itself.
32If instead the twisted Dorfman bracket (see footnote 27) is used, one gets the integrability condition for

a twisted generalized complex structure with a twisted generalized Nijenhuis tensor. Consider the closed

three form H = HM1M2M3t
M1t

M2t
M3 with Hm1m2m3 the only nonvanishing components. The twisted

generalized Nijenhuis tensor then reads

NH
M1M2M3

= NM1M2M3 + 6HM1M2M3 − 18JM1

KHKM2LJ
L

M3

Like (C.60)–(C.61) this twisted generalized Nijenhuis tensor as well matches with the tensors given in [19]

if one redefines Hmnk → 1
3!

Hmnk.
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antisymmetrized because of J 2 = −1):

1

4
Nm1m2m3 = P [m1|k∂kP

|m2m3] (C.60)

!
= 0

1

4
Nn

m1m2 =
1

3

(
−Jk

n∂kP
[m1m2] + 2P [m1|k∂kJ

|m2]
n − P [m1|kJ |m2]

k,n + J [m1|
kP

k|m2]
,n

)

!
= 0

1

4
N n

m1m2 =
1

3

(
−Pnk∂kQ[m1m2] + 2Jk

[m1|∂kJ
n
|m2] + 2Jn

kJ
k
[m1,m2] − 2PnkQk[m1,m2]

)

!
= 0

1

4
Nm1m2m3 = Jk

[m1|∂kQ|m2m3] + Jk
[m1|Qk|m2,m3] − Q[m1|kJ

k
|m2,m3]

!
= 0 (C.61)

If we compare those expressions with the tensors A,B,C and D given in (2.16) of [19, p.7],

we recognize (replacing Q by −Q) that our first line is just 1
3A, the second line is −1

3B

(using (C.24)), the third 1
3C and the fourth line is −1

3D. There, in turn, it is claimed that

the expressions are equivalent to those originally given in (3.16)–(3.19) of [15, p.7].

C.4.1 Coordinate based way to derive the generalized Nijenhuis-tensor

In this sub-subsection we will see that calculations with capital-index notation is rather

convenient. So we simply calculate (C.57) brute force by using the explicit coordinate

formula for the Dorfman-bracket

[v,w]M = v
K∂Kw

M +
(
∂M

vK − ∂Kv
M

)
w

K (C.62)

The brackets of interest are:

[v,Jw]N = v
K∂KJN

Lw
L + J N

Lv
K∂Kw

L +
(
∂N

vK − ∂Kv
N

)
(Jw)K

(J [v,Jw])M = v
KJ M

N∂KJ N
Lw

L − v
K∂Kw

M + JM
N

(
∂N

vK − ∂Kv
N

)
(Jw)K

[J v,w]N = J K
Lv

L∂Kw
N +

(
∂NJKL−∂KJ N

L

)
v

L
w

K +
(
JK

L∂N
vL−JN

L∂Kv
L
)
w

K

(J [J v,w])M = J M
N (J v)K∂Kw

N + J M
N

(
∂NJKL − ∂KJN

L

)
v

L
w

K

−(Jw)LJM
N∂N

vL + ∂Kv
M

w
K

[J v,Jw]M = J K
Nv

N∂KJM
Lw

L+JK
Nv

NJ M
L∂Kw

L

+
(
∂MJKNv

N − ∂KJM
Nv

N
)
JK

Lw
L

+
(
JKN∂M

v
N−JM

N∂Kv
N

)
J K

Lw
L

= (J v)KJ M
L∂Kw

L − JM
N∂Kv

N (Jw)K

+
(
JK

L∂MJKN + 2J K
[N |∂KJ M

|L]

)
v

N
w

L + ∂M
vLw

L (C.63)
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The underlined terms sum up in the complete expression to the generalized Nijenhuis

tensor, while the rest cancels

0
!
= [v,w]M − [J v,Jw]M + (J [J v,w])M + (J [v,Jw])M

=
(
2J M

K∂[NJ K
L] − JK

L∂MJKN + J MK∂KJLN − 2J K
[N |∂KJM

|L]

)
v

N
w

L

= vN

(
3J [M |

KJ K|L,N ] + 3J [N |K∂KJ |ML]
)

wL

=
3

4
vNNNML

wL (C.64)

C.4.2 Derivation via derived brackets

Eventually we want to see directly how the generalized Nijenhuis tensor is connected to de-

rived brackets. We will use our insight from the subsections 2.1.1 and 2.1.2. Remember, our

basis t
M = (dxm,∂m) was identified with the conjugate (ghost-)variables t

M ≡ (cm, bm).

One can define generalized multi-vector fields of the form

K(k) ≡ KM...M ≡ KM1...Mk
t
M1 · · · tMk (C.65)

They are in fact just sums of multivector valued forms:

KM...M =

k∑

k=0

(
k

k

)
Km...m︸ ︷︷ ︸

k

n...n
︸︷︷︸
k−k

≡
k∑

k=0

K(k,k−k) (C.66)

The big bracket, or Buttin’s algebraic bracket is then just the canonical Poisson bracket

[K,L]∆(1) ≡ klKM...M
ILIM...M = {K,L} (C.67)

{tM , tN} = GMN (C.68)

The coordinate expression for its derived bracket (compare to (2.49), (2.51)) reads

(−)k−1
[
dK(k),L(L)

]∆

(1)
= k · KM...M

I∂ILM...M − (−)(k+1)(l+1)
l · LM...M

I∂IKM...M

+(−)k−1
kl∂MKM...M

ILIM...M + k (k − 1) lKM...M
IJLIM...MpJ (C.69)

with pJ ≡ (pj , 0) and ∂I ≡ (∂i, 0). In the case were both K and L only have general-

ized holomorphic indices, the p-term drops and this expression should coincide with the

Schouten-bracket on
∧• L for the holomorphic Lie-algebroid L (see e.g. [3, p.21] and foot-

note 31). For two rank-two objects, like the generalized complex structure J , this reduces

to

[K,d L]∆(1) = 2 · KM
I∂ILMM + 2 · LM

I∂IKMM − 4∂MKM
ILIM + 4KIJLIMpJ (C.70)

which reads for two coinciding tensors J

[J ,d J ]∆(1) = 4 · JM
I∂IJMM − 4∂MJM

IJIM − 4J JIJIMpJ (C.71)

(C.58)
=

J 2=−1
NM...M + 4 pMt

M

︸ ︷︷ ︸
=o (2.8)

(C.72)
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where o = dxkpk = −d(dxk ∧ ∂k). We will verify this relation between the generalized

Nijenhuis tensor and the derived bracket in the following calculation, where we calculate

N using the big bracket (C.67) all the time. This bracket is like a matrix multiplication if

one of the objects has only one index. We will use this fact frequently for the multiplication

of J with a vector

J v ≡ JM
Nv

N
tM =

1

2
{J , v} (C.73)

⇒ {J , {J , v}} = 4J 2
v = −4v = {{v,J } ,J } (C.74)

{{v,J } , {J ,w}} = −4vK
wK = −4 {v,w} (C.75)

If both objects are of higher rank, however, antisymmetrization of the remaining indices

modifies the result. We thus have to be careful with the following examples

{J ,J } = 4JM
KJKM = −4GMM = 0 (! because of antisymmetrization) (C.76)

{J , {J ,dv}} = JM
KJ[K|

L(dv)L|M] 6= −4dv (C.77)

As mentioned earlier, the Dorfman bracket (C.31) used in our integrability condition is

just the derived bracket of the algebraic bracket. i.e. we have

[v,w] = [dv,w]∆ (C.78)

= [dv,w]∆(1) +
∑

p≥2

[dv,w]∆(p)

︸ ︷︷ ︸
=0

(C.79)

= {dv,w} (C.80)

where the differential dhas to be understood in the extended sense of (2.9), (2.32), namely

as Poisson-bracket with the BRST-like generator

o = t
MpM = cmpm

locally
= d(xmpm) = −d(cmbm) (C.81)

pM ≡ (pm, 0) (C.82)

dv ≡ {o, v} = ∂MvM + v
KpK (C.83)

where pm is the conjugate variable to xm. We can now rewrite the integrability condi-

tion (C.57) as

{dv,w} −
1

4
{d{J , v} , {J ,w}} +

1

4
{J , {d{J , v} ,w}} +

1

4
{J , {dv, {J ,w}}}

!
= 0 (C.84)

Remember that the Poisson bracket is a graded one, and v,w and d are odd, while J is

even.

Let us now start with applying Jacobi to the second term of (C.84)

−
1

4
{d{J , v} , {J ,w}} = −

1

4
{{d{J , v} ,J } ,w} −

1

4
{J , {d{J , v} ,w}} (C.85)
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so that we get

0
!
= {dv,w} −

1

4
{{d{J , v} ,J } ,w} +

1

4
{J , {dv, {J ,w}}} (C.86)

= {dv,w} −
1

4
{{{dJ , v} ,J } ,w} −

1

4
{{{J ,dv} ,J } ,w} +

1

4
{J , {dv, {J ,w}}}

= {dv,w} −
1

4
{{{v,dJ } ,J } ,w} +

1

4
{{{dv,J } ,J } ,w} +

1

4
{J , {dv, {J ,w}}}

It would be nice to separate w completely by moving it for the last term into the last

bracket like in the first three terms. We thus consider only the last term for a moment and

calculate it in two different ways (first using Jacobi for second and third bracket and after

that using Jacobi for first and second bracket):

1

4
{J , {dv, {J ,w}}}

1.
=

1

4
{J , {{dv,J } ,w}} +

1

4
{J , {J , {dv,w}}}

=
1

4
{J , {{dv,J } ,w}} − {dv,w}

2.
=

1

4
{{J ,dv} , {J ,w}} +

1

4
{dv, {J , {J ,w}}}

=
1

4
{J , {{J ,dv} ,w}} +

1

4
{{{J ,dv} ,J } ,w} − {dv,w}

= −
1

4
{J , {{dv,J } ,w}}+{dv,w}−2 {dv,w} +

1

4
{{{J ,dv} ,J } ,w}

Comparing both calculations yields

1

4
{J , {dv, {J ,w}}} = −

1

8
{{J , {J ,dv}} ,w} − {dv,w} (C.87)

We can plug this back in (C.86) and leave away the outer bracket with w:

0
!
= dv −

1

4
{{v,dJ } ,J } +

1

4
{{dv,J } ,J } −

1

8
{J , {J ,dv}} − dv (C.88)

= −
1

4
{{v,dJ } ,J } +

1

8
{{dv,J } ,J } (C.89)

= −
1

8
{{v,dJ } ,J } +

1

8
{d{v,J } ,J } (C.90)

= −
1

8
{{v,dJ } ,J } +

1

8
d{{v,J } ,J } +

1

8
{{v,J } ,dJ } (C.91)

= −
1

8
{v, {dJ ,J }} −

1

2
dv (C.92)

=
1

8

({
[J ,dJ ]∆(1) , v

}
− 4dv

)
(C.93)

=
1

8

{
[J ,dJ ]∆(1) − 4o, v

}
(C.94)

where we used

dv = {o, v} (C.95)

The integrability condition is thus (explaining the normalization of N of above) as promised

in (C.72)

N ≡ [J ,dJ ]∆(1) − 4o
!
= 0 (C.96)
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The derived bracket [J ,dJ ]∆(1) indeed contains the term 4o = 4tMpM which therefore is

exactly cancelled.

Precisely the same calculation can be performed by calculating with the complete

algebraic bracket [ , ]∆ instead of the Poisson-bracket, its first order part. Similarly to

above, we have

J v ≡
1

2
[J , v]∆ (C.97)

⇒ [J , [J , v]∆]∆ = 4J 2
v = −4v (C.98)

In combination with (C.78) this is enough to redo the same calculation and get as integra-

bility condition (using [J ,J ] ≡ −[dJ ,J ]∆)

N ≡ [J ,J ] − 4o
!
= 0 (C.99)

which also proves that the derived bracket bracket of the big bracket (which is not neces-

sarily geometrically well defined) coincides in this case with the complete derived bracket

[J ,dJ ]∆(1) = [J ,J ] (C.100)

As discussed in (B.50) and (B.52), throwing away the d-closed part corresponds to taking

Buttin’s bracket instead of the derived one. Remember that o = dxkpk = −d(dxk ∧ ∂k),

s.th. do = 0. We can thus equally write

N = [J ,J ]B (C.101)
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